【題目】閱讀材料:一元二次方程ax2+bx+C0a≠0),當≥0時,設兩根為x1,x2,則兩根與系數(shù)的關系為:x1+x2x1x2

應用:(1)方程x22x+10的兩實數(shù)根分別為x1,x2,則x1+x2   ,x1x2   

2)若關于x的方程x22m+1x+m20的有兩個實數(shù)根x1,x2,求m的取值范圍;

3)在(2)的條件下,若滿足|x1|x2,求實數(shù)m的值.

【答案】(1)2,1;(2)m;(3)m的值為﹣

【解析】

1)根據(jù)韋達定理求解;

2)根據(jù)求解;

3x1x2x1=﹣x2

1x1+x22,x1x21;

故答案為:2,1;

2)∵關于x的方程x22m+1x+m20有兩個實數(shù)根x1、x2

∴△=4m+124m2≥0,

解得m

3)∵|x1|x2,

x1x2x1=﹣x2

x1x2,則0,所以m=﹣,

x1=﹣x2,即x1+x22m+1)=0,

解得m=﹣1,

m,∴m=﹣1舍去.

m的值為﹣

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一位籃球運動員在距離籃圈中心水平距離處跳起投籃,球沿一條拋物線運動,當球運動的水平距離為時,達到最大高度,然后準確落入籃筐內,已知籃圈中心距離地面高度為,試解答下列問題:

1)建立圖中所示的平面直角坐標系,求拋物線所對應的函數(shù)表達式.

2)這次跳投時,球出手處離地面多高?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙O的另一個交點為E,連接AC,CE.

(1)求證:∠B=∠D;

(2)若AB=4,BC﹣AC=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠D=60°,點M在線段AD上,DM= ,AM=2,點E從點D出發(fā),沿著D-C-B-A勻速運動,速度為每秒2個單位長度,達到A點后停止運動,設△MDE的面積為y,點E運動的時間為t(s),yt的部分函數(shù)關系如圖②所示.

(1)如圖①中,DC=_____,如圖②中,m=_______,n=_____.

(2)E點運動過程中,將平行四邊形沿ME所在直線折疊,則t為何值時,折疊后頂點D的對應點D′落在平行四邊形的一邊上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸相交于兩點(點在點的左側),與軸相交于點為拋物線上一點,橫坐標為,且

⑴求此拋物線的解析式;

⑵當點位于軸下方時,求面積的最大值;

⑶設此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標之差為

①求關于的函數(shù)解析式,并寫出自變量的取值范圍;

②當時,直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線軸交于點、(點在點的左側),與軸交于點.

(1)求點,點的坐標;

(2)我們規(guī)定:對于直線,直線,若,則直線;反過來也成立.請根據(jù)這個規(guī)定解決下列問題:

①直線與直線是否垂直?并說明理由;

②若點是拋物線的對稱軸上一動點,是否存在點與點,點構成以為直角邊的直角三角形?若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.在RtABC中,∠C=90°AC=3,BC=2

1)試在圖中畫出將△ABCB為旋轉中心,沿順時針方向旋轉90°后的圖形△A1BC1;

2)若點B的坐標為(-1,-4),點C的坐標為(-3,-4),試在圖中畫出直角坐標系,并寫出點A的坐標;

3)根據(jù)(2)的坐標系作出與△ABC關于原點對稱的圖形△A2B2C2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.

(1)從袋中隨機摸出一個球,記錄其顏色,然后放回.大量重復該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,n的值;

(2)在該不透明袋子中同時摸出兩個球,求摸出的兩個球顏色不同的概率.(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車租賃公司共有汽車50輛,市場調查表明,當租金為每輛每日200元時可全部租出,當租金每提高10元,租出去的車就減少2輛.

1)當租金提高多少元時,公司的每日收益可達到10120元?

2)公司領導希望日收益達到10200元,你認為能否實現(xiàn)?若能,求出此時的租金,若不能,請說明理由.

3)汽車日常維護要一定費用,已知外租車輛每日維護費為100元,未租出的車輛維護費為50元,當租金為多少元時,公司的利潤恰好為5500元?(利潤=收益一維護費).

查看答案和解析>>

同步練習冊答案