【題目】(問題背景)
(1)如圖1的圖形我們把它稱為“8字形”,請說理證明.
(簡單應用)
(2)如圖2,分別平分,若,,求的度數(shù)(可直接使用問題(1)中的結論).
(問題探究)
(3)如圖3,直線平分的外角,平分的外角,若,,猜想的度數(shù)為 .
(拓展延伸)
(4)在圖4中,若設,,,試問與、之間的數(shù)量關系為: (用表示)
(5)在圖5中,平分,平分的外角,猜想與、的關系,直接寫出結論 .
【答案】(1)詳見解析;(2);(3)(4);(5)
【解析】
(1)根據(jù)三角形內(nèi)角和定理即可證明;
(2)如圖2,根據(jù)角平分線的性質得到∠1=∠2,∠3=∠4,列方程組即可得到結論;
(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解決問題;
(4)(5)同法列出方程組即可解決問題.
(1)證明:在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:如圖2,∵AP、CP分別平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)的結論得:,
①+②,得2∠P+∠1+∠3=∠2+∠4+∠B+∠D,
∴∠P=(∠B+∠D)=23°;
(3)解:如圖3,
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°-∠2,∠PCD=180°-∠3,
∵∠P+(180°-∠1)=∠D+(180°-∠3),
∠P+∠1=∠B+∠4,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(36°+16°)=26°;
故答案為:26°;
【拓展延伸】
(4)同法可得:;
故答案為:,
(5)同法可得:.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】已知a、b、c在數(shù)軸上的位置如圖所示,所對應的點分別為A、B、C,
(1)在數(shù)軸上表示2的點與表示5的點之間的距離為 ;
在數(shù)軸上表示﹣1的點與表示3的點之間的距離為 ;在數(shù)軸上表示﹣3的點與表示﹣5的點之間的距離為 ;由此可得點A、B之間的距離為 ,點B、C之間的距離為 ,點A、C之間的距離為 ;
(2)化簡:﹣|a+b|+|c﹣b|﹣|b﹣a|;
(3)若c2=4,﹣b的倒數(shù)是它本身,a的絕對值的相反數(shù)是﹣2,求﹣a+2b﹣c﹣(a﹣4c﹣b)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2013年四川南充3分)如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是【 】
A.12 B. 24 C. 12 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,BC=6,點E是AD邊上一點,∠ABE=30°,BE=DE,連接BD.動點M從點E出發(fā)沿射線ED運動,過點M作MN∥BD交直線BE于點N.
(1)如圖1,當點M在線段ED上時,求證:MN=EM;
(2)設MN長為x,以M、N、D為頂點的三角形面積為y,求y關于x的函數(shù)關系式;
(3)當點M運動到線段ED的中點時,連接NC,過點M作MF⊥NC于F,MF交對角線BD于點G(如圖2),求線段MG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校260名學生參加植樹活動,要求每人植4~7棵,活動結束后隨機抽查了若干名學生每人的植樹量,并分為四種類型, A:4棵;B:5棵;C:6棵;D:7棵,將各類的人數(shù)繪制成扇形圖(如圖1)和條形圖(如圖2),請回答下列問題:
(1)在這次調查中D類型有多少名學生?
(2)寫出被調查學生每人植樹量的眾數(shù)、中位數(shù);
(3)求被調查學生每人植樹量的平均數(shù),并估計這260名學生共植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,點 E、F 分別在AB、CD上,EF∥BC,EF交BD于點G.若EG=5,DF=2,則圖中兩塊陰影部分的面積之和為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的倍.
①求點P的坐標;
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為坐標原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,刪△AOF的面積等于( )
A. 10 B. 9 C. 8 D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩點分別位于一個池塘的兩端,小明想用繩子測量A、B間的距離,但繩子不夠長.他叔叔幫他出了一個這樣的主意:先在地上取一個可以直接到達A點和B點的點C,連接AC并延長到D,使CD=AC;連接BC并延長到E,使CE=CB;連接DE并測量出它的長度.
(1)DE=AB嗎?請說明理由;
(2)如果DE的長度是8 m,則AB的長度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com