(2001•天津)如圖,P是⊙O外一點(diǎn),PD為切線,D為切點(diǎn),割線PEF經(jīng)過圓心O,若PF=12,PD=4.求∠EFD的度數(shù).

【答案】分析:連接OD,首先根據(jù)切割線定理計(jì)算出PE的長,再進(jìn)一步計(jì)算出OP的長和圓的半徑的長;從而在直角三角形OPD中,根據(jù)邊之間的關(guān)系求得角的度數(shù),再根據(jù)圓周角定理進(jìn)行計(jì)算要求的角.
解答:解:連接DO;
∵PD為切線,PEF為割線,
∴PD2=PE•PF;
∵PD=4,PF=12,
∴PE==4,
∴EF=PF-PE=8,EO=4;
∵PD為切線,D為切點(diǎn),
∴OD⊥PD;
∵在Rt△PDO中,OD=4,PO=PE+EO=8,
∴∠DPO=30°,∠DOP=60°,
∵OD=OF,∠DOP為∠DOF的外角,
∴∠EFD=∠DOP=30°.
點(diǎn)評(píng):此題綜合運(yùn)用了切割線定理、切線的性質(zhì)定理以及直角三角形的性質(zhì)和圓周角定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2001•天津)如圖,△ABC內(nèi)接于⊙O,AB的延長線與過C點(diǎn)的切線GC相交于點(diǎn)D,BE與AC相交于點(diǎn)F,且CB=CE.
求證:(1)BE∥DG;
(2)CB2-CF2=BF•FE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(06)(解析版) 題型:解答題

(2001•天津)如圖,△ABC內(nèi)接于⊙O,AB的延長線與過C點(diǎn)的切線GC相交于點(diǎn)D,BE與AC相交于點(diǎn)F,且CB=CE.
求證:(1)BE∥DG;
(2)CB2-CF2=BF•FE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年全國中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2001•天津)如圖,已知△ABC為等腰直角三角形,D為斜邊BC的中點(diǎn),經(jīng)過點(diǎn)A、D的⊙O與邊AB、AC、BC分別相交于點(diǎn)E、F、M.對(duì)于如下五個(gè)結(jié)論:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BE•BA;⑤四邊形AEMF為矩形.其中正確結(jié)論的個(gè)數(shù)是( )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年天津市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•天津)如圖,DE∥BC,且DB=AE,若AB=5,AC=10,則AE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年天津市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2001•天津)如圖,△ABC中,∠B=∠C,F(xiàn)D⊥BC于D,DE⊥AB于E,∠AFD=158°,則∠EDF等于    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案