(2005•黑龍江)王叔叔家有一塊等腰三角形的菜地,腰長為40米,一條筆直的水渠從菜地穿過,這條水渠恰好垂直平分等腰三角形的一腰,水渠穿過菜地部分的長為15米(水渠的寬不計(jì)),請(qǐng)你計(jì)算這塊等腰三角形菜地的面積.
【答案】分析:本題要分等腰三角形的頂角是銳角或鈍角三種情況討論解答.
當(dāng)頂角為銳角時(shí),利用勾股定理求出AE,添加輔助線可求出△ABC的面積.
當(dāng)頂角為鈍角時(shí),作等腰三角形邊上的高,利用比例求出AF即可求解.
當(dāng)頂角為直角時(shí),連接AD,求出BD=AD=DC,求出BD、BC,即可求解
解答:解:根據(jù)題意,有三種情況:
(1)當(dāng)?shù)妊切螢殇J角三角形時(shí)(如圖1所示),
∵D為AB中點(diǎn),
∴AD=DB,
∵AD=DB=20米,DE=15米,
∴AE==25(米),
過C點(diǎn)作CF⊥AB于F,
∴DE∥CF,
∴△ADE∽△AFC,

∴CF==24(米),
∴S△ABC=AB•CF=×40×24=480(米2);

(2)當(dāng)?shù)妊切螢殁g角三角形時(shí)(如圖2所示),
過A點(diǎn)作AF⊥BC于F點(diǎn),
∵AD=BD=20米,DE=15米,
∴BE=25米,
∵∠B=∠B,∠BDE=∠AFB,
∴△BDE∽△BFA,
==
∴BF==32(米),
∴BC=2×32=64(米),AF=24米,
∴S△ABC=×64×24=768(米2);

(3)當(dāng)?shù)妊切问堑妊苯侨切螘r(shí),不符合情況.如圖:
∵∠BAC=90°,∠B=45°;∠BED=90°,∠EDB=45°,
∴∠B=∠EDB,BE=DE,
但∵BE=20米,DE=15米.
所以不符合情況.
點(diǎn)評(píng):本題考查的是線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì),關(guān)鍵是作出等腰三角形的高,并且要分三種情況討論解答.難度中等,要學(xué)會(huì)實(shí)際問題數(shù)學(xué)化,通過數(shù)學(xué)知識(shí)解決實(shí)際問題,是一種很重要的方法,要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ACO=,點(diǎn)P在線段OC上,且PO、PC的長(PO<PC)是關(guān)于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點(diǎn)坐標(biāo);
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫出直線PQ的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ABC=,點(diǎn)P在線段OC上,且PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點(diǎn)坐標(biāo);
(2)求AP的長;
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫出直線PQ的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前10日信息題復(fù)習(xí)題精選(1)(解析版) 題型:解答題

(2005•黑龍江)如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ABC=,點(diǎn)P在線段OC上,且PO、PC的長(PO<PC)是方程x2-12x+27=0的兩根.
(1)求P點(diǎn)坐標(biāo);
(2)求AP的長;
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫出直線PQ的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年黑龍江省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2005•黑龍江)已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,2)與(-1,4),則a+c的值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年黑龍江省中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2005•黑龍江)如圖所示,在平面直角坐標(biāo)系中,Rt△ABC的斜邊AB在x軸上,AB=25,頂點(diǎn)C在y軸的負(fù)半軸上,tan∠ACO=,點(diǎn)P在線段OC上,且PO、PC的長(PO<PC)是關(guān)于x的方程x2-(2k+4)x+8k=0的兩根.
(1)求AC、BC的值;
(2)求P點(diǎn)坐標(biāo);
(3)在x軸上是否存在點(diǎn)Q,使以點(diǎn)A、C、P、Q為頂點(diǎn)的四邊形是梯形?若存在,請(qǐng)直接寫出直線PQ的解析式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案