【題目】甲乙兩位同學(xué)用圍棋子做游戲.如圖所示,現(xiàn)輪到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5個(gè)棋子組成軸對(duì)稱圖形,白棋的5個(gè)棋子也成軸對(duì)稱圖形.則下列下子方法不正確的是【 】.[說(shuō)明:棋子的位置用數(shù)對(duì)表示,如A點(diǎn)在(6,3)]

A.黑(3,7);白(5,3) B.黑(4,7);白(6,2)

C.黑(2,7);白(5,3) D.黑(3,7);白(2,6)

【答案】C。

【解析】分別根據(jù)選項(xiàng)所說(shuō)的黑、白棋子放入圖形,再由軸對(duì)稱的定義進(jìn)行判斷即可得出答:

A、若放入黑(3,7),白(5,3),則此時(shí)黑棋是軸對(duì)稱圖形,白旗也是軸對(duì)稱圖形;

B、若放入黑(4,7);白(6,2),則此時(shí)黑棋是軸對(duì)稱圖形,白旗也是軸對(duì)稱圖形;

C、若放入黑(2,7);白(5,3),則此時(shí)黑棋不是軸對(duì)稱圖形,白旗是軸對(duì)稱圖形;

D、若放入黑(3,7);白(6,2),則此時(shí)黑棋是軸對(duì)稱圖形,白旗也是軸對(duì)稱圖形。

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶大坪時(shí)代天街已成為人們周末休閑娛樂(lè)的重要場(chǎng)所,時(shí)代天街從一樓到二樓有一自動(dòng)扶梯(如圖1),圖2是側(cè)面示意圖.已知自動(dòng)扶梯AC的坡度為i=1:2.4,AC=13m,BE是二樓樓頂,EF∥MN,B是EF上處在自動(dòng)扶梯頂端C正上方的一點(diǎn),且BC⊥EF,在自動(dòng)扶梯底端A處測(cè)得B點(diǎn)仰角為42°.(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

為了吸引顧客,開發(fā)商想在P處放置一個(gè)高10m的《瘋狂動(dòng)物城》的裝飾雕像,并要求雕像最高點(diǎn)與二樓頂層要留出2m距離好放置燈具,請(qǐng)問(wèn)這個(gè)雕像能放得下嗎?如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長(zhǎng)為a,則重疊部分四邊形EMCN的面積為(

A. a2
B. a2
C. a2
D. a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給下以下結(jié)論:
①2a﹣b=0;
②abc>0;
③4ac﹣b2<0;
④9a+3b+c<0;
⑤關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個(gè)相等實(shí)數(shù)根;
⑥8a+c<0.
其中正確的個(gè)數(shù)是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料并解決有關(guān)問(wèn)題:

我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x2|時(shí),可令x+1=0x2=0,分別求得x=1,x=2(稱﹣1,2分別為|x+1||x2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①x﹣1;②﹣1≤x2③x≥2

從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|可分以下3種情況:

當(dāng)x﹣1時(shí),原式=﹣x+1x﹣2=﹣2x+1;

當(dāng)﹣1≤x2時(shí),原式=x+1﹣x﹣2=3;

當(dāng)x≥2時(shí),原式=x+1+x2=2x1.綜上討論,原式=

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn)題:

1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|

2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線l1的最高點(diǎn)為P(3,4),且經(jīng)過(guò)點(diǎn)A(0,1),將拋物線l1繞原點(diǎn)O旋轉(zhuǎn)180°后,得到拋物線l2 , 求l2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)分別為O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)問(wèn):是否存在這樣的m,使得在邊BC上總存在點(diǎn)P,使∠OPA=90°?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(2)當(dāng)∠AOC與∠OAB的平分線的交點(diǎn)Q在邊BC上時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)y= 的圖象如圖,給出以下結(jié)論:
①常數(shù)k<1;
②在每一個(gè)象限內(nèi),y隨x的增大而減;
③若點(diǎn)A(﹣1,a)和A′(1,b)都在該函數(shù)的圖象上,則a+b=0;
④若點(diǎn)B(﹣2,h)、C( ,m)、D(3,n)在該函數(shù)的圖象上,則h<m<n.
其中正確的結(jié)論是(

A.①②
B.②③
C.③④
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為( )

A. B. C. D. 不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案