【題目】如圖,E是正方形ABCD的邊DC上一點,過點A作FA=AE交CB的延長線于點F,若AB=4,則四邊形AFCE的面積是( )
A.4
B.8
C.16
D.無法計算
【答案】C
【解析】解:∵四邊形ABCD是正方形, ∴∠ABC=∠D=90°,AB=AD,
即∠ABF=∠D=90°,
在Rt△ABF和Rt△ADE中,
,
∴Rt△ABF≌Rt△ADE(HL),
∴SRt△ABF=SRt△ADE ,
∴SRt△ABF+S四邊形ABCE=SRt△ADE+S四邊形ABCE ,
∴S四邊形AFCE=S正方形ABCD=16.
故選C.
【考點精析】本題主要考查了正方形的性質的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點,OD⊥BC于點D,過點C作⊙O的切線,交OD的延長線于點E,連結BE.
(1)求證:BE與⊙O相切;
(2)連結AD并延長交BE于點F,若OB=6,且sin∠ABC=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年5月9日﹣11日,貴州省第十一屆旅游產業(yè)發(fā)展大會在準一市茅臺鎮(zhèn)舉行,大會推出五條遵義精品旅游線路:A紅色經典,B醉美丹霞,C生態(tài)茶海,D民族風情,E避暑休閑.某校攝影小社團在“祖國好、家鄉(xiāng)美”主題宣傳周里,隨機抽取部分學生舉行“最愛旅游路線”投票活動,參與者每人選出一條心中最愛的旅游路線,社團對投票進行了統(tǒng)計,并繪制出如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請解決下列問題.
(1)本次參與投票的總人數(shù)是 人.
(2)請補全條形統(tǒng)計圖.
(3)扇形統(tǒng)計圖中,線路D部分的圓心角是 度.
(4)全校2400名學生中,請你估計,選擇“生態(tài)茶海”路線的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網格(每個小正方形邊長為1)中,每個小正方形的頂點稱為格點,以格點為頂點的三角形叫做個點三角形.
(1)在圖中的正方形網格中畫出格點△ABC,使AB=3,AC=1(直接畫出圖形,不寫過程);
(2)把你所畫的△ABC先向右平移3個單位,再向上平移2個單位,畫出平移后的△A1B1C1;
(3)填空BCB1C1 , ∠BAC∠B1A1C1(填“>”“=”“<”).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線與軸交于點A(4,0),與軸交于點B,在x軸上有一動點E(m,0)(0<m<4),過點E作軸的垂線交直線AB于點N,交拋物線于點P,過點P作PM⊥AB于點M.
(1)求的值和直線AB的函數(shù)表達式;
(2)在P點運動的過程中,請用含m的代數(shù)式表示線段PN;
(3)設△PMN的周長為,△AEN的周長為,若,求m的值;
(4)如圖2,在(3)條件下,將線段OE繞點O逆時針旋轉得到OE′,旋轉角為α(0°<α<90°),連接、,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com