如圖,AB,CD是⊙O的直徑,點(diǎn)E在AB延長(zhǎng)線上,F(xiàn)E⊥AB,BE=EF=2,F(xiàn)E的延長(zhǎng)線交CD延長(zhǎng)線于點(diǎn)G,DG=GE=3,連接FD.
(1)求⊙O的半徑;
(2)求證:DF是⊙O的切線.

【答案】分析:(1)⊙0半徑為R,則OD=OB=R,在Rt△OEG中,∠OEG=90°,由勾股定理得出方程(R+3)2=(R+2)2+32,求出即可;
(2)證△FDG≌△OEG,推出∠FDG=∠OEG=90°,求出OD⊥DF,根據(jù)切線的判定推出即可.
解答:(1)解:設(shè)⊙0半徑為R,則OD=OB=R,
在Rt△OEG中,∠OEG=90°,由勾股定理得:OG2=OE2+EG2,
∴(R+3)2=(R+2)2+32
R=2,
即⊙O半徑是2.

(2)證明:∵OB=OD=2,
∴OG=2+3=5,GF=2+3=5=OG,
∵在△FDG和△OEG中

∴△FDG≌△OEG(SAS),
∴∠FDG=∠OEG=90°,
∴∠ODF=90°,
∴OD⊥DF,
∵OD為半徑,
∴DF是⊙O的切線.
點(diǎn)評(píng):本題考查了勾股定理,全等三角形的性質(zhì)和判定,切線的判定的應(yīng)用,主要考查學(xué)生的推理能力和計(jì)算能力,用了方程思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,AB、CD是⊙O的弦,∠A=∠C.求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB、CD是水平放置的輪盤(俯視圖)上兩條互相垂直的直徑,一個(gè)小鋼球在輪盤上自由滾動(dòng),該小鋼球最終停在陰影區(qū)域的概率為(  )
A、
1
4
B、
1
5
C、
3
8
D、
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安)如圖,AB,CD是⊙O的兩條互相垂直的直徑,點(diǎn)O1,O2,O3,O4分別是OA、OB、OC、OD的中點(diǎn),若⊙O的半徑為2,則陰影部分的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•盤錦)如圖,AB,CD是⊙O的直徑,點(diǎn)E在AB延長(zhǎng)線上,F(xiàn)E⊥AB,BE=EF=2,F(xiàn)E的延長(zhǎng)線交CD延長(zhǎng)線于點(diǎn)G,DG=GE=3,連接FD.
(1)求⊙O的半徑;
(2)求證:DF是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB,CD是⊙O的兩條弦,且AB=CD,點(diǎn)M是
AC
的中點(diǎn),求證:MB=MD.

查看答案和解析>>

同步練習(xí)冊(cè)答案