【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(3,﹣3),點B的坐標(biāo)為(﹣1,3),回答下列問題

(1)C的坐標(biāo)是

(2)B關(guān)于原點的對稱點的坐標(biāo)是

(3)ABC的面積為

(4)畫出△ABC關(guān)于x軸對稱的△A′B′C′.

【答案】(1)(﹣3,﹣2);(2)(1,﹣3);(316;(4)見解析.

【解析】

(1)根據(jù)平面直角坐標(biāo)系寫出即可;

(2)根據(jù)關(guān)于原點對稱的點的橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù)解答;

(3)利用三角形所在的矩形的面積減去四周三個直角三角形的面積,列式計算即可得解;

(4)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于x軸的對稱點A′、B′、C′的位置,然后順次連接即可.

(1)C的坐標(biāo)是(﹣3,﹣2);

(2)B關(guān)于原點的對稱點的坐標(biāo)是(1,﹣3);

(3)ABC的面積=6×6﹣0.5×2×5﹣0.5×1×6﹣0.5×4×6=36﹣5﹣3﹣12=36﹣20=16;

(4)如圖所示,△A′B′C′即為所求作的三角形.

故答案為:(1)(﹣3,﹣2),(2)(1,﹣3),(3)16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A、B、CD、E在同一直線上,且ACBD,E是線段BC的中點.

(1)點E是線段AD的中點嗎?說明理由;

(2)當(dāng)AD=10,AB=3時,求線段BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2,AC=BC=

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點的坐標(biāo);
(2)求過A、B、C三點且以C為頂點的拋物線的解析式;
(3)若D為拋物線上的一動點,當(dāng)D點坐標(biāo)為何值時,SABD= SABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點A′B′,與y軸交于點C′,當(dāng)平移多少個單位時,點C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4﹣4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2﹣4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時,即y2=1,∴y1=1,y2=﹣1.
當(dāng)x2=3,即y2=3,∴y3= ,y4=﹣
所以,原方程的解是y1=1,y2=﹣1,y3= ,y4=﹣
再如x2﹣2=4 ,可設(shè)y= ,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+2x+c的圖象與x軸交于點A(3,0)和點C,與y軸交于點B(0,3).

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找一點D,使得點D到點B、C的距離之和最小,并求出點D的坐標(biāo)解:;
(3)在第一象限的拋物線上,是否存在一點P,使得△ABP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論: ①4a﹣b<0;
②abc<0;
③a+b+c<0;
④a﹣b+c>0;
⑤4a+2b+c>0.
其中錯誤的個數(shù)有( 。

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三個頂點都在格點上,每個小方格邊長均為1個單位長度,建立如圖坐標(biāo)系.

(1)請你作出△ABC關(guān)于點A成中心對稱的△AB1C1(其中B的對稱點是B1 , C的對稱點是C1),并寫出點B1、C1的坐標(biāo).
(2)依次連接BC1、C1B1、B1C.猜想四邊形BC1B1C是什么特殊四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,連接BC.

(1)求點A、B、C的坐標(biāo).
(2)點P為AB上的動點(點A、O、B除外),過點P作直線PN⊥x軸,交拋物線于點N,交直線BC于點M.設(shè)點P到原點的值為t,MN的長度為s,求s與t的函數(shù)關(guān)系式.
(3)在(2)的條件下,試求出在點P運動的過程中,由點O、P、N圍成的三角形與Rt△COB相似時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+by軸于點A,交x軸于點B,SAOB=8.

(1)求點B的坐標(biāo)和直線AB的函數(shù)表達式;

(2)直線a垂直平分OBAB于點D,交x軸于點E,點P是直線a上一動點,且在點D的上方,設(shè)點P的縱坐標(biāo)為m.

①用含m的代數(shù)式表示ABP的面積;

②當(dāng)SABP=6時,求點P的坐標(biāo);

③在②的條件下,在坐標(biāo)軸上,是否存在一點Q,使得ABQABP面積相等?若存在,直接寫出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN為⊙O的直徑,A、B是⊙O上的兩點,過A作AC⊥MN于點C,過B作BD⊥MN于點D,P為DC上的任意一點,若MN=20,AC=8,BD=6,則PA+PB的最小值是

查看答案和解析>>

同步練習(xí)冊答案