【題目】如圖,已知二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為A(4,0),與y軸的交點(diǎn)為B,過(guò)A、B的直線為.
(1)求二次函數(shù)的解析式及點(diǎn)B的坐標(biāo);
(2)由圖象寫(xiě)出滿足的自變量x的取值范圍;
(3)在兩坐標(biāo)軸上是否存在點(diǎn)P,使得△ABP是以AB為底邊的等腰三角形?若存在,求出P的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1),B(0,3);(2)x<0或x>4;(3)P1(0,),P2(,0).
【解析】
(1)將A點(diǎn)坐標(biāo)代入y1,可得拋物線的解析式,根據(jù)自變量為零,可得B點(diǎn)坐標(biāo);
(2)根據(jù)一次函數(shù)圖象在上方的部分是不等式的解集,觀察圖象可得到答案;
(3)根據(jù)線段垂直平分線上的點(diǎn)到線段兩點(diǎn)間的距離相等,可得P在線段的垂直平分線上,根據(jù)直線AB,可得AB的垂直平分線,根據(jù)自變量為零,可得P在y軸上,根據(jù)函數(shù)值為零,可得P在x軸上.
解:(1)將A點(diǎn)坐標(biāo)代入,得:﹣16+13+c=0.解得c=3,
∴二次函數(shù)的解析式為,
∵當(dāng)x=0時(shí),=3,
∴B點(diǎn)坐標(biāo)為(0,3);
(2)由圖象得直線在拋物線上方的部分,是x<0或x>4,
∴x<0或x>4時(shí),;
(3)存在,解答如下:
根據(jù)線段垂直平分線上的點(diǎn)到線段兩點(diǎn)間的距離相等,可得P在線段的垂直平分線上,作線段AB的垂直平分線l,垂足為C,
∵A(4,0),B(0,3),設(shè)直線AB解解析式為,
則有:,解得:,
∴直線AB的解析式為,
設(shè)AB的垂直平分線l的解析式為:,
∵直線l過(guò)AB的中點(diǎn)為(2,),
∴,解得:,
∴AB的垂直平分線l的解析式為,
①當(dāng)x=0時(shí),y=,P1(0,),
②當(dāng)y=0時(shí),x=,P2(,0),
綜上所述:P1(0,),P2(,0),使得△ABP是以AB為底邊的等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與軸交于、兩點(diǎn),點(diǎn)在原點(diǎn)的左側(cè),點(diǎn)的坐標(biāo)為(,),與軸交于(,),點(diǎn)是直線下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)連結(jié)、,并把△沿邊翻折,得到四邊形, 那么是否存在點(diǎn),使四邊形為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形的面積最大并求出此時(shí)點(diǎn)的坐標(biāo)和四邊形的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,AE⊥BC于E,交BD于F點(diǎn),下列結(jié)論:
①BF為∠ABE的角平分線;
②DF=2BF;
③2AB2=DFDB;
④sin∠BAE=.其中正確的為( )
A.①③B.①②④C.①④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABC中,∠ACB=45°, D為AC上一點(diǎn),,連接BD,將ABD沿BD翻折至EBD,點(diǎn)A的對(duì)應(yīng)點(diǎn)E點(diǎn)恰好落在邊BC上,延長(zhǎng)BC至點(diǎn)F,連接DF,若CF=2,,則DF長(zhǎng)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(m>0)與x軸相交于點(diǎn)A,B,與y軸相交于點(diǎn)C,且點(diǎn)A在點(diǎn)B的左側(cè).
(1)若拋物線過(guò)點(diǎn)(2,2),求拋物線的解析式;
(2)在(1)的條件下,拋物線的對(duì)稱軸上是否存在一點(diǎn)H,使AH+CH的值最小,若存在,求出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在第四象限內(nèi),拋物線上是否存在點(diǎn)M,使得以點(diǎn)A,B,M為頂點(diǎn)的三角形與△ACB相似?若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E在BD的延長(zhǎng)線上,且△EAC是等邊三角形.
(1)求證:四邊形ABCD是菱形.
(2)若AC=8,AB=5,求ED的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是ABCD的對(duì)角線,∠BAC=90°,ABC的邊AB,AC,BC的長(zhǎng)是三個(gè)連續(xù)偶數(shù),E,F分別是邊AB,BC上的動(dòng)點(diǎn),且EF⊥BC,將BEF沿著EF折疊得到PEF,連接AP,DP.若APD為直角三角形時(shí),BF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖、圖均是的正方形網(wǎng)格,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),的頂點(diǎn)均在格點(diǎn)上,點(diǎn)為邊的中點(diǎn).分別在圖、圖中的邊上確定點(diǎn)并作出直線,使與相似.
要求:(1)圖、圖中的點(diǎn)位置不同.
(2)只用無(wú)刻度的直尺,保留適當(dāng)?shù)淖鲌D痕跡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)D的直線交AC于E點(diǎn),交AB于點(diǎn)F,DF=BF,EA=EF.
(1)求證:△AEF為等邊三角形;
(2)若CF⊥AB,①試說(shuō)明DC = CF;②求AD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com