A. | $\sqrt{5}$ | B. | $\sqrt{7}$ | C. | 3 | D. | $\sqrt{3}+1$ |
分析 作B關(guān)于AC的對(duì)稱點(diǎn)B′,連接BB′、B′D,交AC于E,此時(shí)BE+ED=B′E+ED=B′D,根據(jù)兩點(diǎn)之間線段最短可知B′D就是BE+ED的最小值,故E即為所求的點(diǎn).
解答 解:作B關(guān)于AC的對(duì)稱點(diǎn)B′,連接BB′、B′D,交AC于E,此時(shí)BE+ED=B′E+ED=B′D,根據(jù)兩點(diǎn)之間線段最短可知B′D就是BE+ED的最小值,
∵B、B′關(guān)于AC的對(duì)稱,
∴AC、BB′互相垂直平分,
∴四邊形ABCB′是平行四邊形,
∵三角形ABC是邊長(zhǎng)為2,
∵D為BC的中點(diǎn),
∴AD⊥BC,
∴AD=$\sqrt{3}$,BD=CD=1,BB′=2AD=2$\sqrt{3}$,
作B′G⊥BC的延長(zhǎng)線于G,
∴B′G=AD=$\sqrt{3}$,
在Rt△B′BG中,
BG=$\sqrt{BB{'}^{2}-B'{G}^{2}}=\sqrt{(2\sqrt{3})^{2}-(\sqrt{3})^{2}}$=3,
∴DG=BG-BD=3-1=2,
在Rt△B′DG中,BD=$\sqrt{D{G}^{2}+B'{G}^{2}}=\sqrt{{2}^{2}+(\sqrt{3})^{2}}=\sqrt{7}$.
故BE+ED的最小值為$\sqrt{7}$.
故選B.
點(diǎn)評(píng) 本題考查的是最短路線問(wèn)題,涉及的知識(shí)點(diǎn)有:軸對(duì)稱的性質(zhì)、等邊三角形的性質(zhì)、勾股定理等,有一定的綜合性,但難易適中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 56 | B. | 34 | C. | 28 | D. | 14 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{7}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2+4x+3=0 | B. | x2+4x-3=0 | C. | x2-4x+3=0 | D. | x2-4x-3=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com