如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,),△AOB的面積是
(1)求點B的坐標(biāo);
(2)求過點A、O、B的拋物線的解析式;
(3)在(2)中拋物線的對稱軸上是否存在點C,使△AOC的周長最小?若存在,求出點C的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)由面積公式及A點縱坐標(biāo)可求OB,確定B點坐標(biāo);
(2)拋物線過O(0,0),B(-2,0)兩點,設(shè)拋物線交點式y(tǒng)=ax(x+2),將點A(1,)代入求a即可;
(3)存在.根據(jù)拋物線的對稱性,得出點O關(guān)于對稱軸的對稱點為B點,連接AB,與對稱軸的交點C即為所求,根據(jù)A、B兩點坐標(biāo)求直線AB的解析式,由對稱軸x=-1求C點縱坐標(biāo).
解答:解:(1)由題意得:OB•=,
∴OB=2,
∴B(-2,0);

(2)設(shè)拋物線的解析式為y=ax(x+2),代入點A(1,),得a=
∴y=x2+x;

(3)存在點C.
B、O兩點關(guān)于拋物線對稱軸x=-1對稱,連接AB交拋物線對稱軸于C點連接OC、OA,C點即為所求.
設(shè)直線AB解析式為y=kx+b,將A、B兩點坐標(biāo)代入,得
解得,
∴y=x+,
當(dāng)x=-1時,y=,∴C(-1,).
點評:本題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點的求法等知識點.主要考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案