【題目】如圖,點(diǎn)P是菱形ABCD邊上的一動(dòng)點(diǎn),它從點(diǎn)A出發(fā)沿在A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,設(shè)PAD的面積為y,P點(diǎn)的運(yùn)動(dòng)時(shí)間為x,則y關(guān)于x的函數(shù)圖象大致為(  )

A. B. C. D.

【答案】B

【解析】設(shè)菱形的高為h,即是一個(gè)定值,再分點(diǎn)PAB上,在BC上和在CD上三種情況,利用三角形的面積公式列式求出相應(yīng)的函數(shù)關(guān)系式,然后選擇答案即可.

①當(dāng)PAB邊上時(shí),如圖1,

設(shè)菱形的高為h,

y=APh,

APx的增大而增大,h不變,

yx的增大而增大,

故選項(xiàng)C不正確;

②當(dāng)P在邊BC上時(shí),如圖2,

y=ADh,

ADh都不變,

∴在這個(gè)過程中,y不變,

故選項(xiàng)A不正確;

③當(dāng)P在邊CD上時(shí),如圖3,

y=PDh,

PDx的增大而減小,h不變,

yx的增大而減小,

P點(diǎn)從點(diǎn)A出發(fā)沿A→B→C→D路徑勻速運(yùn)動(dòng)到點(diǎn)D,

P在三條線段上運(yùn)動(dòng)的時(shí)間相同,

故選項(xiàng)D不正確,

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線經(jīng)過點(diǎn)A,0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,延長AC至點(diǎn)D,使CDBC,連接BD,作CEAB于點(diǎn)EDFBCBC的延長線于點(diǎn)F,且CEDF.

(1)求證:ABAC.

(2)如果∠ABD105°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn)

小明在學(xué)習(xí)魯教版八年級(jí)上冊(cè)97頁例4時(shí),受到啟發(fā)進(jìn)行如下數(shù)學(xué)實(shí)驗(yàn)操作:

如圖1,取一個(gè)銳角為45°的三角尺,把銳角頂點(diǎn)放在正方形ABCD的頂點(diǎn)D處,將三角尺繞點(diǎn)D旋轉(zhuǎn)一個(gè)角度,使三角尺的直角邊與斜邊分別交邊AB,BC于點(diǎn)E和點(diǎn)F,連接FE,在繞點(diǎn)D旋轉(zhuǎn)過程中,發(fā)現(xiàn)線段AE,EF,CF滿足EF=AE+CF的數(shù)量關(guān)系,但是不會(huì)進(jìn)行證明,數(shù)學(xué)張老師給他如下的提示:ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°DCE’的位置,小明畫旋轉(zhuǎn)后的圖形,利用全等的知識(shí)證明了出來.你根據(jù)上面的提示畫出旋轉(zhuǎn)后的圖形,并將上面的結(jié)論進(jìn)行證明.

問題探究

小明的探究引發(fā)了老師的興趣,老師將三角尺繞點(diǎn)D旋轉(zhuǎn)到如圖2的位置,三角尺的直角邊與斜邊分別交邊AB,BC的延長線于點(diǎn)E和點(diǎn)F,老師問題小明此時(shí)AE,EF,CF滿足什么數(shù)量關(guān)系,小明思考后說出了正確的結(jié)論.請(qǐng)同學(xué)們直接寫出正確結(jié)論(不用寫出證明過程).

拓展延伸

張老師讓小明利用上面探究積累的學(xué)習(xí)經(jīng)驗(yàn),解答下面的問題:

如圖3已知正方形ABCD,點(diǎn)E在邊AB,點(diǎn)F在邊BC,且∠EDF=45°,CD=6,AE=2,CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知△ABC頂點(diǎn)坐標(biāo)分別為A(0,3),B(1,1)C(3,﹣1),△DEF與△ABC關(guān)于y軸對(duì)稱,且A,BC依次對(duì)應(yīng)D,E,F,

(1)請(qǐng)寫出D,E,F的坐標(biāo).

(2)在平面直角坐標(biāo)系中畫出△ABC和△DEF.

(3)經(jīng)過計(jì)算△DEF各邊長度,發(fā)現(xiàn)DE、EF、FD滿足什么關(guān)系式,寫出關(guān)系式.

(4)求△DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,點(diǎn)GBC邊上任意一點(diǎn),DEAG于點(diǎn)E,BFDE且交AG于點(diǎn)F.

(1)如圖1,求證:AE=BF;

(2)連接DF,若tanBAG=,AB=2,求△ADF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 6×6 的網(wǎng)格中,四邊形 ABCD 的頂點(diǎn)都在格點(diǎn)上,每個(gè)格子都是邊長為 1 的正方形,建立如圖所示的平面直角坐標(biāo)系.

(1)畫出四邊形 ABCD 關(guān)于 y 軸對(duì)稱和四邊形 A′B′C′D′(點(diǎn) A、B、C、D的對(duì)稱點(diǎn)分別是點(diǎn) A′B′C′D′.

(2)求 A、B′、B、C 四點(diǎn)組成和四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知雙曲線y=(x0)和y=(x0),直線OA與雙曲線y=交于點(diǎn)A,將直線OA向下平移與雙曲線y=交于點(diǎn)B,與y軸交于點(diǎn)P,與雙曲線y=交于點(diǎn)C,SABC=6,=,則k=( 。

A. ﹣6 B. ﹣4 C. 6 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案