【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H.給出如下幾個(gè)結(jié)論:
①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,則BG=6GF;④CG與BD一定不垂直;⑤∠BGE=60°.其中正確的結(jié)論個(gè)數(shù)為( 。
A. 5 B. 4 C. 3 D. 2
【答案】C
【解析】
①先證明△ABD為等邊三角形,根據(jù)“SAS”證明△AED≌△DFB,利用全等三角形的性質(zhì)解答即可;
②先證明△ABD為等邊三角形,根據(jù)“SAS”證明△AED≌△DFB;
③過(guò)點(diǎn)F作FP∥AE于P點(diǎn),根據(jù)題意有FP:AE=DF:DA=1:3,則FP:BE=1:6=FG:BG,即BG=6GF;
④因?yàn)辄c(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,當(dāng)點(diǎn)E,F分別是AB,AD中點(diǎn)時(shí),CG⊥BD;
⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°
①∵ABCD為菱形,∴AB=AD.
∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,∴△AED≌△DFB,∴∠ADE=∠DBF,故本選項(xiàng)正確;
②∵ABCD為菱形,∴AB=AD.
∵AB=BD,∴△ABD為等邊三角形,∴∠A=∠BDF=60°.
又∵AE=DF,AD=BD,∴△AED≌△DFB,故本選項(xiàng)錯(cuò)誤;
③過(guò)點(diǎn)F作FP∥AE交DE于P點(diǎn)(如圖2).
∵AF=2FD,∴FP:AE=DF:DA=1:3.
∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:2AE=1:6.
∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本選項(xiàng)正確;
④當(dāng)點(diǎn)E,F分別是AB,AD中點(diǎn)時(shí)(如圖3),由(1)知,△ABD,△BDC為等邊三角形.
∵點(diǎn)E,F分別是AB,AD中點(diǎn),∴∠BDE=∠DBG=30°,∴DG=BG.在△GDC與△BGC中,∵,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;
⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,故本選項(xiàng)正確;
綜上所述:正確的結(jié)論有①③⑤,共3個(gè).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的對(duì)角線(xiàn)相交于點(diǎn),,.
(1)求證:四邊形是菱形;
(2)若,,求矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .
⑴.求證:⊿是等腰三角形;
⑵.當(dāng) 時(shí),求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是一個(gè)供滑板愛(ài)好者使用的型池的示意圖,該型池可以看成是長(zhǎng)方體去掉一個(gè)“半圓柱”而成,中間可供滑行部分的截面是直徑為的半圓,其邊緣,點(diǎn)在上,,一滑板愛(ài)好者從點(diǎn)滑到點(diǎn),則他滑行的最短距離約為_________.(邊緣部分的厚度忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)移動(dòng)某套餐推出了如下兩種流量計(jì)費(fèi)方式:
月租費(fèi)/元 | 流量費(fèi)(元/) | |
方式一 | 8 | 1 |
方式二 | 28 | 0.5 |
(1)設(shè)一個(gè)月內(nèi)用移動(dòng)電話(huà)使用流量為,方式一總費(fèi)用元,方式二總費(fèi)用元(總費(fèi)用不計(jì)通話(huà)費(fèi)及其它服務(wù)費(fèi)).寫(xiě)出和關(guān)于的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍);
(2)如圖為在同一平面直角坐標(biāo)系中畫(huà)出(1)中的兩個(gè)函數(shù)圖象的示意圖,記它們的交點(diǎn)為點(diǎn),求點(diǎn)的坐標(biāo),并解釋點(diǎn)坐標(biāo)的實(shí)際意義;
(3)根據(jù)(2)中函數(shù)圖象,結(jié)合每月使用的流量情況,請(qǐng)直接寫(xiě)出選擇哪種計(jì)費(fèi)方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)的一檔娛樂(lè)性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長(zhǎng)短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.
(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;
(2)請(qǐng)用畫(huà)樹(shù)狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市出租車(chē)計(jì)費(fèi)辦法如圖所示.根據(jù)圖象信息,下列說(shuō)法錯(cuò)誤的是( 。
A. 出租車(chē)起步價(jià)是10元
B. 在3千米內(nèi)只收起步價(jià)
C. 超過(guò)3千米部分(x>3)每千米收3元
D. 超過(guò)3千米時(shí)(x>3)所需費(fèi)用y與x之間的函數(shù)關(guān)系式是y=2x+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為線(xiàn)段上一點(diǎn),在同側(cè)分別作正三角形和,分別與、交于點(diǎn)、,與交于點(diǎn),以下結(jié)論:①≌;②;③;④.以上結(jié)論正確的有_________(把你認(rèn)為正確的序號(hào)都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy(如圖),拋物線(xiàn)y=﹣x2+2mx+3m2(m>0)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱(chēng)軸為直線(xiàn)l,過(guò)點(diǎn)C作直線(xiàn)l的垂線(xiàn),垂足為點(diǎn)E,聯(lián)結(jié)DC、BC.
(1)當(dāng)點(diǎn)C(0,3)時(shí),
①求這條拋物線(xiàn)的表達(dá)式和頂點(diǎn)坐標(biāo);
②求證:∠DCE=∠BCE;
(2)當(dāng)CB平分∠DCO時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com