某經(jīng)銷商代理銷售一種手機,按協(xié)議,每賣出一部手機需另交品牌代理費100元,已知該種手機每部進價800元,銷售單價為1200元時,每月能賣出100部,市場調(diào)查發(fā)現(xiàn),若每部手機每讓利50元,則每月可多售出40部.
(1)若每月要獲取36000元利潤,求讓利價
(利潤=銷售收入-進貨成本-品牌代理費)
(2)設(shè)讓利x元,月利潤為y元,寫出y與x的函數(shù)關(guān)系式,并求讓利多少元時,月利潤最大?
(1)100元或75元;(2)y=-,87.5.
解析試題分析:(1)根據(jù)利潤=銷售收入-進貨成本-品牌代理費=36000列方程,再解方程求出x的值即可.
(2)首先根據(jù)利潤=銷售收入-進貨成本-品牌代理費=y,得到x和y的二次函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性求得最大利潤.
設(shè)讓利x元,依題意得(300-x)(0.8x+100)=36000,
解之得,x1=100,x2=75.
經(jīng)檢驗,x1,x2均符合題意.
答:讓利100元或75元每月可獲取利潤36000元.
(2)依題意得:y=(300-x)(0.8x+100)=-
∵-<0,∴當(dāng)x=87.5時,y有最大值.
答:讓利87.5元,月利潤最大.
考點:1.二次函數(shù)的應(yīng)用;2.一元二次方程的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標(biāo);
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當(dāng)矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價的辦法,經(jīng)市場調(diào)研,每降價1元,月銷售量可增加2萬件.
⑴ 求出月銷售量y(萬件)與銷售單價x(元)之間的函數(shù)關(guān)系式;
⑵ 求出月銷售利潤z(萬元)與銷售單價x(元)之間的函數(shù)關(guān)系式,并在下面坐標(biāo)系中,畫出圖象草圖;
⑶ 為了使月銷售利潤不低于480萬元,請借助⑵中所畫圖象進行分析,說明銷售單價的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在直角坐標(biāo)平面內(nèi),O為原點,拋物線經(jīng)過點A(6,0),且頂點B(m,6)在直線上.
(1)求m的值和拋物線的解析式;
(2)如在線段OB上有一點C,滿足,在x軸上有一點D(10,0),連接DC,且直線DC與y軸交于點E.
①求直線DC的解析式;
②如點M是直線DC上的一個動點,在x軸上方的平面內(nèi)有另一點N,且以O(shè)、E、M、N為頂點的四邊形是菱形,請直接寫出點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,已知正方形ABCD的邊長為1,點E在邊BC上,若∠AEF=90°,且EF交正方形外角的平分線CF于點F.
(1)圖1中若點E是邊BC的中點,我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);
(2)如圖2,若點E在線段BC上滑動(不與點B,C重合).
①AE=EF是否總成立?請給出證明;
②在如圖2的直角坐標(biāo)系中,當(dāng)點E滑動到某處時,點F恰好落在拋物線y=-x2+x+1上,求此時點F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖(1),直線與x軸交于點A、與y軸交于點D,以AD為腰,以x軸為底作等腰梯形ABCD(AB>CD),且等腰梯形的面積是8,拋物線經(jīng)過等腰梯形的四個頂點.
圖(1)
(1) 求拋物線的解析式;
(2) 如圖(2)若點P為BC上的—個動點(與B、C不重合),以P為圓心,BP長為半徑作圓,與軸的另一個交點為E,作EF⊥AD,垂足為F,請判斷EF與⊙P的位置關(guān)系,并給以證明;
圖(2)
(3) 在(2)的條件下,是否存在點P,使⊙P與y軸相切,如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(-2,4),過點A作AB⊥y軸,垂足為B,連接OA.
(1)求△OAB的面積;
(2)若拋物線y=-x2-2x+c經(jīng)過點A.
①求c的值;
②將拋物線向下平移m個單位,使平移后得到的拋物線頂點落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm,點P從O點開始沿OA邊向點A以1cm/s的速度移動:點Q從點B開始沿BO邊向點O以1cm/s的速度移動,如果P、Q同時出發(fā),用t(s)表示移動的時間(),那么:
(1)設(shè)△POQ的面積為,求關(guān)于的函數(shù)解析式。
(2)當(dāng)△POQ的面積最大時,△ POQ沿直線PQ翻折后得到△PCQ,試判斷點C是否落在直線AB上,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com