【題目】如圖,已知反比例函數(shù)y=(x>0,k是常數(shù))的圖象經(jīng)過點A(1,4),點B(m,n),其中m>1,AM⊥x軸,垂足為M,BN⊥y軸,垂足為N,AM與BN的交點為C.
(1)求出反比例函數(shù)解析式;
(2)求證:△ACB∽△NOM.
(3)延長線段AB,交x軸于點D,若點B恰好為AD的中點,求此時點B的坐標(biāo).
【答案】(1)(2)詳見解析;(3)B(2,2)
【解析】
(1)將點A的坐標(biāo)代入反比例函數(shù)y=(x>0,k是常數(shù))中,即可求得;
(2)由于∠ACB =∠NOM = 90°,所以要證ΔACB∽ΔNOM,只要即可,由已知分別求出和,證明它們相等即可;
(3)由AM⊥x軸求得AM=4,由BN//OD可得,點C是AM的中點,則CM=2,則點B的縱坐標(biāo)為2,從而求得點B橫坐標(biāo).
(1)∵反比例函數(shù)y=(x>0,k是常數(shù))的圖象經(jīng)過點A(1,4),
∴k=xy=4,
∴反比例函數(shù)解析式:y=(x>0);
(2) ∵ B(m,n),A(1,4),∴AC = 4–n,BC = m–1,ON = n,OM = 1.
∴=.
∵點B(m,n)在y=上,
∴m= .
∴=m-1.
又∵.
∴.
又∵∠ACB =∠NOM = 90°,
∴ ΔACB∽ΔNOM.
(3) ∵AM⊥x軸,且A(1,4),
∴點C的橫坐標(biāo)1,AM=4,
∵BN//x軸,點B是AD的中點,
∴點C是AM的中點,
∴CM=2,即點B的縱坐標(biāo)為2,
又∵點B在反比例函數(shù)y=上,
∴點B縱坐標(biāo)為2,
∴點B的坐標(biāo)為(2,2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A11B11C11D11E11F11的邊長為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?
(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(3,-2)在反比例函數(shù)的圖像上,則下列各點中,也在反比例函數(shù)圖像上的是( )
A. (3,-3) B. (-2,3) C. (1,6) D. (-2,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,并解答問題.
材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
解:由分母為﹣x2+1,可設(shè)﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
∵對應(yīng)任意x,上述等式均成立,∴,∴a=2,b=1
∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.
解答:
(1)將分式 拆分成一個整式與一個分式(分子為整數(shù))的和的形式.
(2)試說明的最小值為8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是反比例函數(shù)的圖象上的一個動點,連接OA,若將線段O A繞點O順時針旋轉(zhuǎn)90°得到線段OB,則點B所在圖象的函數(shù)表達式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°,求這兩座建筑物的高度(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F是AE與⊙O的交點,AC平分∠BAE,連接OC.
(1)求證:DE是⊙O的切線;
(2)若⊙O半徑為4,∠D=30°,求圖中陰影部分的面積(結(jié)果用含π和根號的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光華農(nóng)機租賃公司共有50臺聯(lián)合收割機,其中甲型20臺,乙型30臺,先將這50臺聯(lián)合收割機派往A、B兩地區(qū)收割小麥,其中30臺派往A地區(qū),20臺派往B地區(qū).兩地區(qū)與該農(nóng)機租賃公司商定的每天的租賃價格見表:
每臺甲型收割機的租金 | 每臺乙型收割機的租金 | |
A地區(qū) | 1800 | 1600 |
B地區(qū) | 1600 | 1200 |
(1)設(shè)派往A地區(qū)x臺乙型聯(lián)合收割機,租賃公司這50臺聯(lián)合收割機一天獲得的租金為y(元),求y與x間的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)若使農(nóng)機租賃公司這50臺聯(lián)合收割機一天獲得的租金總額不低于79 600元,說明有多少種分配方案,并將各種方案設(shè)計出來;
(3)如果要使這50臺聯(lián)合收割機每天獲得的租金最高,請你為光華農(nóng)機租賃公司提一條合理化建議.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com