科目:初中數(shù)學(xué) 來源: 題型:
如圖,鐵路道口的欄桿短臂長1m,長臂長16m.當(dāng)短臂端點下降0.5m時,長臂端點升高(桿的寬度忽略不計).
A.4m B.6m C.8m D.12m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,二次函數(shù)y=2x2+bx+c的圖象經(jīng)過(-1,0)和(,0)兩點.
(1)求此二次函數(shù)的表達(dá)式.
(2)直接寫出當(dāng)-<x<1時,y的取值范圍.
(3)將一次函數(shù) y=(1-m)x+2的圖象向下平移m個單位后,與二次函數(shù)y=2x2+bx+c圖象交點的橫坐標(biāo)分別是a和b,其中a<2<b,試求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀下面資料:
小明遇到這樣一個問題:如圖1,對面積為a的△ABC逐次進(jìn)行以下操作:分別延長AB、
BC、CA至A1、B1、C1,使得A1B=AB,B1C=BC,C1A=CA,順次連接A1、B1、C1,
得到△A1B1C1,記其面積為S1,求S1的值.
小明是這樣思考和解決這個問題的:如圖2,連接A1C、B1A、C1B,因為A1B=AB,
B1C=BC,C1A=CA,根據(jù)等高兩三角形的面積比等于底之比,
圖1 圖2
所以,由此繼續(xù)推理,從而解決了這個問題.
(1)請直接寫出S1= ;(用含字母a的式子表示).
請參考小明同學(xué)思考問題的方法,解決下列問題:
(2)如圖3,對面積為a的△ABC逐次進(jìn)行以下操作:分別延長AB、BC、CA至A1、
B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,順次連接A1、B1、C1,得到△A1B1C1,記其
面積為S2,求S2的值.
(3)如圖4,P為△ABC內(nèi)一點,連接AP、BP、CP并延長分別交邊BC、AC、AB于
點D、E、F,則把△ABC分成六個小三角形,其中四個小三角形面積已在圖上標(biāo)明,設(shè)△APE的面積為y,△BPF的面積為x,
①求△APE ,△BPF,△APF 面積之間的關(guān)系;
②求△ABC的面積.
|
| ||||
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列四個數(shù)軸上的點A都表示實數(shù)a,其中,一定滿足︱a︱>︱-2︱的是
A.①③ B.②③ C.①④ D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com