已知:如圖,AB是⊙O的一條弦,點(diǎn)C為的中點(diǎn),CD是⊙O的直徑,過(guò)C點(diǎn)的直線l交AB所在直線于點(diǎn)E,交⊙O于點(diǎn)F.
(1)判定圖中∠CEB與∠FDC的數(shù)量關(guān)系,并寫(xiě)出結(jié)論;
(2)將直線l繞C點(diǎn)旋轉(zhuǎn)(與CD不重合),在旋轉(zhuǎn)過(guò)程中,E點(diǎn),F(xiàn)點(diǎn)的位置也隨之變化,請(qǐng)你在下面兩個(gè)備用圖中分別畫(huà)出在不同位置時(shí),使(1)的結(jié)論仍然成立的圖形,標(biāo)上相應(yīng)字母,選其中一個(gè)圖形給予證明.

【答案】分析:根據(jù)垂徑定理得到CD⊥AB,∠CFD=90°,然后通過(guò)等量代換求證出∠CEB=∠FDC.
解答:(1)解:∠CEB=∠FDC;
理由:∵CD是⊙O的直徑,點(diǎn)C為的中點(diǎn),
∴CD⊥AB,
∴∠CEB+∠ECD=90°,
∵CD是⊙O的直徑,
∴∠CFD=90°.
∴∠FDC+∠ECD=90°.
∴∠CEB=∠FDC.

(2)證明:如圖②
∵CD是⊙O的直徑,點(diǎn)C為的中點(diǎn),
∴CD⊥AB,
∴∠CEB+∠ECD=90°,
∵CD是⊙O的直徑,
∴∠CFD=90°.
∴∠FDC+∠ECD=90°.
∴∠CEB=∠FDC.
點(diǎn)評(píng):本題考查垂徑定理,這是需要熟練掌握的內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•門(mén)頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過(guò)點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長(zhǎng)線交MN于點(diǎn)P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
AD
的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過(guò)點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

查看答案和解析>>

同步練習(xí)冊(cè)答案