在直角坐標(biāo)系中,已知點(diǎn)A(a+b,2-a)與點(diǎn)B(a-5,b-2a)關(guān)于y軸對(duì)稱,
(1)試確定點(diǎn)A、B的坐標(biāo);
(2)如果點(diǎn)B關(guān)于x軸的對(duì)稱的點(diǎn)是C,求△ABC的面積.

解:(1)∵點(diǎn)A(a+b,2-a)與點(diǎn)B(a-5,b-2a)關(guān)于y軸對(duì)稱,
,
解得:,
∴點(diǎn)A、B的坐標(biāo)分別為:(4,1),(-4,1);

(2)∵點(diǎn)B關(guān)于x軸的對(duì)稱的點(diǎn)是C,
∴C點(diǎn)坐標(biāo)為:(-4,-1),
∴△ABC的面積為:×BC×AB=×2×8=8.
分析:(1)根據(jù)在平面直角坐標(biāo)系中,關(guān)于y軸對(duì)稱時(shí),橫坐標(biāo)為相反數(shù),縱坐標(biāo)不變,得出方程組求出a,b即可解答本題;
(2)根據(jù)點(diǎn)B關(guān)于x軸的對(duì)稱的點(diǎn)是C,得出C點(diǎn)坐標(biāo),進(jìn)而利用三角形面積公式求出即可.
點(diǎn)評(píng):本題主要考查了平面直角坐標(biāo)系中,各象限內(nèi)點(diǎn)的坐標(biāo)的符號(hào)的確定方法以及三角形面積求法,熟練記憶各象限內(nèi)點(diǎn)的坐標(biāo)符號(hào)是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A、B兩點(diǎn),且△ABO的面積為12.
(1)求k的值;
(2)若P為直線AB上一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO是以O(shè)A為底的等腰三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎如果是,試說明理由,如果不是,請(qǐng)?jiān)诰段AB上求一點(diǎn)C,使得△CBO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,-4),C(0,1),過點(diǎn)C作直線DC交x軸于點(diǎn)D,使得以D、C、O為頂點(diǎn)的三角形與△AOB相似,這樣的直線一共可以作出( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•從化市一模)如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、(2)、(3)、(4)、…,那么第(7)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是
(24,0)
(24,0)
,第(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形精英家教網(wǎng)的直角頂點(diǎn)的坐標(biāo)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(0,
3
)、B(3,0),以AB為一邊作等邊△ABC,且點(diǎn)C在第一象限.則點(diǎn)C的坐標(biāo)是
(3,2
3
(3,2
3
,若G是△ABC的重心,則G的坐標(biāo)是
(2,
3
(2,
3

查看答案和解析>>

同步練習(xí)冊(cè)答案