【題目】如圖1,在矩形ABCD中,動點P從點B出發(fā),沿BC→CD→DA運動至點A停止.設(shè)點P運動的路程為x,△ABP的面積為y,y關(guān)于x的函數(shù)圖象如圖2所示,則m的值是( )
A.6
B.8
C.11
D.16
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點的坐標為,將點向右平移個單位得到點,其中關(guān)于的一元一次不等式的解集為,過點作軸于得到長方形,
(1)求點坐標______及四邊形的面積_______;
(2)如圖2,點從點以每秒個單位長度的速度在軸上向上運動,同時點從點以每秒個單位長度的速度勻速在軸上向左運動,設(shè)運動的時間為秒,問是否存在一段時間,使得的面積不大于的面積,若存在,求出的取值范圍;若不存在,說明理由;
(3)在(2)的條件下,四邊形的面積是否發(fā)生變化,若不變化,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)淪中,錯誤的有( 。
①Rt△ABC中,已知兩邊分別為3和4,則第三邊的長為5;②三角形的三邊分別為a、b、c,若a2+b2=c2,則∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,則這個三角形是一個直角三角形;④若(x﹣y)2+M=(x+y)2成立,則M=4xy.
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B和線段CD都在數(shù)軸上,點A、C、D、B起始位置所表示的數(shù)分別為-2、0、3、12;線段CD沿數(shù)軸的正方向以每秒1個單位的速度移動,移動時間為t秒.
(1)用含有t的代數(shù)式表示AC的長為多少,當t=2秒時,AC的長為多少.
(2)當0<t<9時AC+BD等于多少,當t>9時AC+BD等于多少.
(3)若點A與線段CD同時出發(fā)沿數(shù)軸的正方向移動,點A的速度為每秒2個單位,在移動過程中,是否存在某一時刻使得AC=2BD,若存在,請直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歷史上對勾股定理的一種證法采用了如圖所示圖形,其中兩個全等的直角三角形邊AE,EB在一條直線上.證明中用到的面積相等關(guān)系是 ( )
A. S△EDA=S△CEB
B. S△EDA +S△CEB=S△CDB
C. S四邊形CDAE= S四邊形CDEB
D. S△EDA+S△CDE+S△CEB= S四邊形ABCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(1)班體育委員統(tǒng)計了全班同學(xué)60秒跳繩次數(shù),并列出了下面的不完整頻數(shù)分布表和不完整的頻數(shù)分布直方圖.根據(jù)圖表中的信息解答問題
組別 | 跳繩次數(shù) | 頻數(shù) |
A | 60≤x<80 | 2 |
B | 80≤x<100 | 6 |
C | 100≤x<120 | 18 |
D | 120≤x<140 | 12 |
E | 140≤x<160 | a |
F | 160≤x<180 | 3 |
G | 180≤x<200 | 1 |
合計 | 50 |
(1)求a的值;
(2)求跳繩次數(shù)x在120≤x<180范圍內(nèi)的學(xué)生的人數(shù);
(3)補全頻數(shù)分布直方圖,并指出組距與組數(shù)分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y =x,過點A(0,1)作y軸的垂線交直線于點B,過點B作直線l的垂線交y軸于點A1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2;…按此作法繼續(xù)下去,則點A2019的坐標為( )
A. (0,42019) B. (0,42018) C. (0,32019) D. (0,32018)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且OB=OD.點E在線段OA上,連結(jié)BE,DE.給出下列條件:①OC=OE;②AB=AD;③BC⊥CD;④∠CBD=∠EBD.請你從中選擇兩個條件,使四邊形BCDE是菱形,并給予證明.你選擇的條件是:(只填寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,在直線AC、直線BC上分別取點D和點且AD=CE,直線BD、AE相交于點F.
(1)如圖1所示,當點D、點E分別在線段CA、BC上時,求證:BD=AE;
(2)如圖2所示,當點D、點E分別在CA、BC的延長線時,求∠BFE的度數(shù);
(3)如圖3所示,在(2)的條件下,過點C作CM∥BD,交EF于點M,若DF:AF:AM=1:2:4,BC=12,求CE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com