【題目】如圖,曲柄連桿裝置是很多機械上不可缺少的,曲柄OA繞O點圓周運動,連桿AP拉動活塞作往復(fù)運動.當曲柄的A旋轉(zhuǎn)到最右邊時,如圖(1),OP長為8cm;當曲柄的A旋轉(zhuǎn)到最左邊時,如圖(2)OP長為18cm.

(1)求曲柄OA和連桿AP分別有多長;

(2)求:OA⊥OP時,如圖(3),OP的長是多少.

【答案】(1) AP=13cm,OA=5cm (2) OP=12cm

【解析】(1)、設(shè)AP=a,OA=b,根據(jù)圖一和圖二列出二元一次方程組,從而得出答案;(2)、根據(jù)Rt△OAP的勾股定理得出答案.

(1)設(shè)AP=a,OA=b,由題意, 解得,

∴AP=13cm,OA=5cm.

(2)當OA⊥OP時,在Rt△PAO中,OP==12,

∴OP=12cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高中部在A校區(qū),初中部在B校區(qū),學(xué)校學(xué)生會計劃在3月12日植樹節(jié)當天安排部分學(xué)生到郊區(qū)公園參加植樹活動.已知A校區(qū)的每位高中學(xué)生往返車費是6元,B校區(qū)的每位初中學(xué)生往返的車費是10元,要求初、高中均有學(xué)生參加,且參加活動的初中學(xué)生比參加活動的高中學(xué)生多4人,本次活動的往返車費總和不超過210元,求初、高中最多各有多少學(xué)生參加.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點O,過點O作兩條射線OM、ON,且AOMCON90°

(1)OC平分AOM,求AOD的度數(shù).

(2)∠1BOC,求AOCMOD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班對道德與法治,歷史,地理三門程的選考情況進行調(diào)研,數(shù)據(jù)如下:

科目

道德與法治

歷史

地理

選考人數(shù)(人)

19

13

18

其中道德與法治,歷史兩門課程都選了的有3人,歷史,地理兩門課程都選了的有4人,該班至多有多少學(xué)生(

A.41B.42C.43D.44

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠A=60°,BD,CE是△ABC的兩條角平分線,且BD,CE交于點F,如圖所示,用等式表示BEBCCD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;

曉東通過觀察,實驗,提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質(zhì)證明CM=CD即可.

1)下面是小東證明該猜想的部分思路,請補充完整;

①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF______全等,判定它們?nèi)鹊囊罁?jù)是______

②由∠A=60°,BD,CE是△ABC的兩條角平分線,可以得出∠EFB=______°;

2)請直接利用①,②已得到的結(jié)論,完成證明猜想BE+CD=BC的過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班共50名同學(xué),統(tǒng)一參加區(qū)教育局舉辦的防“霧霾”知識檢驗,成績分別記作60分、70分、80分、90分、100分,現(xiàn)統(tǒng)計出80分、90分、100分的人數(shù),制成不完整的扇形統(tǒng)計圖.

(1)若n=108,則60分的人數(shù)為 ;

(2)若從這50份試卷中,隨機抽取一份,求抽到試卷的分數(shù)低于80分的概率;

(3)若成績的唯一眾數(shù)為80分,求這個班平均成績的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為( 。

A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,小明提出這樣一個問題:∠B=∠C90°,EBC的中點,DE平分∠ADC,∠CDE55°.如圖,則∠EAB的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,正方形ABCD中,P是邊BC上一點,BEAP,DFAP,垂足分別是點E、F.

(1)求證:EF=AE﹣BE;

(2)聯(lián)結(jié)BF,如課=.求證:EF=EP.

查看答案和解析>>

同步練習(xí)冊答案