【題目】(操作發(fā)現(xiàn))
如圖①,在正方形ABCD中,點N、M分別在邊BC、CD上,連結(jié)AM、AN、MN.
∠MAN=45°,將△AMD繞點A順時針旋轉(zhuǎn)90°,點D與點B重合,得到△ABE.易證:△ANM≌△ANE,從而得DM+BN=MN.
(實踐探究)
(1)在圖①條件下,若CN=3,CM=4,則正方形ABCD的邊長是 .
(2)如圖②,點M、N分別在邊CD、AB上,且BN=DM.點E、F分別在BM、DN上,∠EAF=45°,連接EF,猜想三條線段EF、BE、DF之間滿足的數(shù)量關(guān)系,并說明理由.
(拓展)
(3)如圖③,在矩形ABCD中,AB=3,AD=4,點M、N分別在邊DC、BC上,連結(jié)AM,AN,已知∠MAN=45°,BN=1,求DM的長.
【答案】(1)6;(2),見解析;(3)2
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)證明△ABE≌△ADM得到BE=DM,又由∠ABE=∠D=90°,AE=AM,∠BAE=∠DAM,證出∠EAM=90°,得出∠MAN=∠EAN,再證明△AMN≌△EAN(SAS),得出MN=EN最后證出MN=BN+DM.在Rt△CMN中,由勾股定理計算即可得到正方形的邊長;
(2 )先根據(jù)旋轉(zhuǎn)的性質(zhì)證明△AEG≌△AEF(SAS),再證明∠GBE=90°,再根據(jù)勾股定理即可得到;
(3)在AB上截取AP,在BC上截取BQ,使AP=AB=BQ=3,連結(jié)PQ交AM于點R,得到ABQP為正方形,再根據(jù)操作發(fā)現(xiàn)以及勾股定理即可得到答案;
(1)(1)解:∵四邊形ABCD是正方形,
∴AB=CD=AD,∠BAD=∠C=∠D=90°,
由旋轉(zhuǎn)得:△ABE≌△ADM,
∴BE=DM,∠ABE=∠D=90°,AE=AM,∠BAE=∠DAM,
∴∠BAE+∠BAM=∠DAM+∠BAM=∠BAD=90°,
即∠EAM=90°,
∵∠MAN=45°,
∴∠EAN=90°-45°=45°,
∴∠MAN=∠EAN,
在△AMN和△EAN中,
∴△AMN≌△EAN(SAS),
∴MN=EN.
∵EN=BE+BN=DM+BN,
∴MN=BN+DM.
在Rt△CMN中,
,
則BN+DM=5,
設(shè)正方形ABCD的邊長為x,則BN=BC-CN=x-3,DM=CD-CM=x-4,
∴x-3+x-4=5,
解得:x=6,
即正方形ABCD的邊長是6;
故答案為:6;
(2)數(shù)量關(guān)系為:,證明如下:
將△AFD繞點A順時針旋轉(zhuǎn)90°,點D與點B重合,得到△ABG,連結(jié)EG.
由旋轉(zhuǎn)的性質(zhì)得到:AF=AG,
又∵∠EAF=45°,
∴,
且AE=AE,
∴△AEG≌△AEF(SAS),
從而得EG=EF.(全等三角形對應(yīng)邊相等),
又∵BN=DM,BN∥DM,
∴四邊形DMBN是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),
∴DN∥BM,
∴ (兩直線平行,同位角相等),
∵,
∴(等量替換),
即:∠GBE=90°,
則,
∴;
(3)在AB上截取AP,在BC上截取BQ,使AP=AB=BQ=3,連結(jié)PQ交AM于點R,
易證ABQP為正方形,
由操作與發(fā)現(xiàn)知:PR+BN=RN.
設(shè)PR=x,則RQ=3﹣x,RN=1+x,QN=3-1=2
在Rt△QRN中,由勾股定理得:
,
即
解得:x=,
∴PR=
∵PQ∥DC,
∴△APR∽△ADM,
∴ (相似三角形對應(yīng)邊成比例)
∴
∴DM=2;
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB為半圓O的直徑,C為半圓O上一點,連接AC,BC,過點O作OD⊥AC于點D,過點A作半圓O的切線交OD的延長線于點E,連接BD并延長交AE于點F.
(1)求證:AEBC=ADAB;
(2)若半圓O的直徑為10,sin∠BAC=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題情境:
已知是正方形的對角線,將正方形和正方形按如圖放置.
(1)如圖1,使點與點重合,與相交于點,與的延長線相交于點.求證:.
操作發(fā)現(xiàn):
圖1
(2)如圖2,使點在上(,兩點除外),與相交于點,與的延長線相交于點.判斷和的數(shù)量關(guān)系,并說明理由;
圖2
拓廣探索:
(3)如圖3,使在上(,兩點除外),經(jīng)過點,與正方形的外角的平分線相交于點.判斷和的數(shù)量關(guān)系,并說明理由.
圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當BP=1時,tan∠OAE=,其中正確的結(jié)論是( )
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“2020鹽城國際半程馬拉松”的賽事共有三項:A、“半程馬拉松”、B、“10公里”、C、“迷你馬拉松”.小明和小華參加了該項賽事的志愿者服務(wù)工作,組委會隨機將志愿者分配到三個項目組.
(1)小明被分配到“迷你馬拉松”項目組的概率為 ;
(2)請用表格或樹狀圖列出所有可能情況,求小明和小華被分配到不同項目組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)作圖:作∠MON的平分線OE,在OE上任取一點A,過A作AB∥OM,AC∥ON,連接BC交OA于D.(只保留作圖痕跡)
(2)BC與OA的位置關(guān)系是什么?請加以證明.
(3)若OA=8,AC=5,則BD是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年9月,我國中小學生迎來了新版“教育部統(tǒng)編義務(wù)教育語文教科書”,本次“統(tǒng)編本”教材最引人關(guān)注的變化之一是強調(diào)對傳統(tǒng)文化經(jīng)典著作的閱讀,某校對A《三國演義》、B《紅樓夢》、C《西游記》、D《水滸》四大名著開展“最受歡迎的傳統(tǒng)文化經(jīng)典著作”調(diào)查,隨機調(diào)查了若干名學生(每名學生必選且只能選這四大名著中的一部)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計圖:
(1)本次一共調(diào)查了 名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)某班語文老師想從這四大名著中隨機選取兩部作為學生暑期必讀書籍,請用樹狀圖或列表的方法求恰好選中《三國演義》和《紅樓夢》的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一項工程,甲隊單獨做需40天完成,若乙隊先做30天后,甲、乙兩隊一起合做20天恰好完成任務(wù),請問:
(1)乙隊單獨做需要多少天才能完成任務(wù)?
(2)現(xiàn)將該工程分成兩部分,甲隊做其中一部分工程用了x天,乙隊做另一部分工程用了y天,若x; y都是正整數(shù),且甲隊做的時間不到15天,乙隊做的時間不到70天,那么兩隊實際各做了多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一家蔬菜公司收購到某種綠色蔬菜140噸,準備加工后進行銷售,銷售后獲利的情況如下表所示:
銷售方式 | 粗加工后銷售 | 精加工后銷售 |
每噸獲利(元) | 1000 | 2000 |
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進行.受季節(jié)等條件的限制,公司必須在一定時間內(nèi)將這批蔬菜全部加工后銷售完.
(1)如果要求12天剛好加工完140噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?
(2)如果先進行精加工,然后進行粗加工.
①試求出銷售利潤元與精加工的蔬菜噸數(shù)之間的函數(shù)關(guān)系式;
②若要求在不超過10天的時間內(nèi),將140噸蔬菜全部加工完后進行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com