如圖,在⊙O中,AB⊥CD于E,當AE=2cm,EB=6cm,ED=3cm,EC=4cm,求:
(1)OE的長;
(2)⊙O的半徑長.
考點:垂徑定理,勾股定理
專題:計算題
分析:(1)過O作OF⊥CD,OG⊥AB,連接OE,OB,利用垂徑定理得到F,G分別為CD,AB的中點,由CE-CF求出EF的長,即為OG的長,由EB-GB求出EG的長,在直角三角形OEG中,利用勾股定理求出OE的長即可;
(2)在直角三角形OGB中,利用勾股定理求出OB的長,即為圓的半徑長.
解答:解:(1)過O作OF⊥CD,OG⊥AB,連接OE,OB,
由垂徑定理得到F為CD中點,G為AB中點,
∴CF=DF=
1
2
CD=
1
2
(CE+ED)=3.5cm,AG=BG=
1
2
AB=
1
2
(AE+EB)=4cm,
∴OF=EG=AG-AE=2cm,OG=FE=CE-CF=0.5cm,
在Rt△OEG中,利用勾股定理得:OE=
22+0.52
=
17
2
cm;
(2)在Rt△OGB中,OG=0.5cm,BG=4cm,
根據(jù)勾股定理得:OB=
42+0.52
=
65
2
cm.
點評:此題考查了垂徑定理,勾股定理,以及矩形的性質(zhì),熟練掌握垂徑定理是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

在Rt△ABC中,如果各邊長度都擴大3倍,那么銳角A的各個三角函數(shù)值( 。
A、都縮小
1
3
B、都不變
C、都擴大3倍
D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

因式分解:a2b3-abc2d+ab2cd-c3d2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一輛汽車要在規(guī)定的時間內(nèi)從甲地趕往乙地,如果每小時行駛45千米,就要遲到0.5小時;如果每小時行駛50千米,就會早0.5小時.若設(shè)甲、乙兩地間的距離為x千米,規(guī)定的時間為y小時,則可列方程組為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一個長方形的兩邊分別是2cm、3cm,若將這個長方形繞一邊所在直線旋轉(zhuǎn)一周后是一個什么幾何體?請求出這個幾何體的底面積和側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

一件工作甲單干用20小時完成,乙單干用的時間比甲多4小時,丙單干用的時間是甲的
1
2
還多2小時.
(1)甲的工作效率是
 
,乙的工作效率是
 
,丙的工作效率是
 
;
(2)甲乙合作此項工作需要
 
小時完成;
(3)若甲乙合作先干10小時,丙單干再用
 
小時完成.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知(
x
3
+
y
2
-a
2+|
x
2
-
y
3
+b
|=0,求x、y的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

從凸n邊形的一個頂點,所畫的全部對角線,把這個n變形分割成
 
個三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一次函數(shù)的圖象經(jīng)過點A(1,-8)、B(-2,1).
(1)求此一次函數(shù)的表達式,并畫出它的圖象.
(2)根據(jù)圖象,寫出當-4≤x≤10時,函數(shù)y的取值范圍.

查看答案和解析>>

同步練習冊答案