分析 首先過點A作AN∥CD,分別交EF,BC于點M,N,易得四邊形AMFD與四邊形ANCD是平行四邊形,則可求得FM=CN=AD=3,BN=2,易證得△AEM∽△ABN,然后由相似三角形的對應邊成比例,可求得EM的長,繼而求得答案.
解答 解:過點A作AN∥CD,分別交EF,BC于點M,N,
∵AD∥BC,EF∥BC,
∴AD∥EF∥BC,
∴四邊形AMFD與四邊形ANCD是平行四邊形,
∴CN=MF=AD=6cm,
∴BN=BC-CN=9-6=3cm,
∵EF∥BC,
∴△AEM∽△ABN,
∴EN:BM=AE:AB,
∵AE:EB=2:1,
∴AE:AB=2:3,
∴EM=$\frac{2}{3}$BN=2,
∴EF=EM+FM=2+6=8.
故答案為:8.
點評 此題考查了相似三角形的判定與性質(zhì)、梯形的性質(zhì)以及平行四邊形的判定與性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應用.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 70° | B. | 60° | C. | 50° | D. | 40° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 10+$\frac{10}{11}$=102×$\frac{10}{11}$ | B. | 10+$\frac{10}{99}$=102×$\frac{10}{99}$ | ||
C. | 11+$\frac{11}{12}$=112×$\frac{11}{12}$ | D. | 11+$\frac{11}{120}$=112×$\frac{11}{120}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com