四邊形ABCD的對角線AC、BD交于點O,且S△AOB=4,S△COD=9,則四邊形ABCD面積有( )

A.最小值12
B.最大值12
C.最小值25
D.最大值25
【答案】分析:首先假設S△AOD=x,S△BOC=y,則S四邊形ABCD=4+9+x+y,因而轉化為求x+y的最小值.利用完全平方式可知x+y≥2,及平行線的特點,可知S最小值.
解答:解:設S△AOD=x,S△BOC=y,則S四邊形ABCD=4+9+x+y;



當且僅當x=y時,;
此時,
故S最小=4+9+2×6=25.
故選C.
點評:本題考查面積及等積變換,完全平方式.本題是一道典型的數(shù)形結合的題目,用到了完全平方式,三角形的面積、四邊形的面積計算,解決本題的關鍵是巧設未知數(shù),轉化為求最小值解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準內(nèi)心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準內(nèi)心.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準內(nèi)心.
(2)分別畫出圖3平行四邊形和圖4梯形的準內(nèi)心.(作圖工具不限,不寫作法,但要有必要的說明)
(3)同樣,我們定義:到凸四邊形一組對角頂點的距離相等,到另一組對角頂點的距離也相等的點叫凸四邊形的準外心.若QA=QC,QB=QD,則點Q就是四邊形ABCD的準外心.那么你認為Q是
AC的中垂線
AC的中垂線
BD的中垂線
BD的中垂線
的交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是
15
15

查看答案和解析>>

科目:初中數(shù)學 來源:1+1輕巧奪冠·優(yōu)化訓練·八年級數(shù)學下 題型:013

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關系為

[  ]

A.∠B+∠D=180°

B.∠B=∠D

C.∠B>∠D

D.∠B<∠D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關系為


  1. A.
    ∠B+∠D=180°
  2. B.
    ∠B=∠D
  3. C.
    ∠B>∠D
  4. D.
    ∠B<∠D

查看答案和解析>>

同步練習冊答案