【題目】如圖所示,在中,分別是邊上的點(diǎn),且,則______.
【答案】
【解析】
在△ABC中,根據(jù)等邊對等角得出∠B=∠C.在△BEP和△CFP中根據(jù)等邊對等角和三角形內(nèi)角和定理,∠EPB=∠FPC,等量代換得到∠BEP=∠FPC,根據(jù)三角形外角的性質(zhì)得出∠B=∠EPF=50°,然后即可三角形內(nèi)角和定理即可求出∠A的度數(shù).
∵在△ABC中,AB=AC,
∴∠B=∠C.
∵BE=BP,
∴∠BEP=∠EPB,
同理,∠FPC=∠PFC.
∵∠B+2∠EPB=∠C+2∠FPC=180°,
∴∠EPB=∠FPC,
∴∠BEP=∠FPC.
∵∠B+∠BEP=∠EPC=∠EPF+∠FPC,
∴∠B=∠EPF=50°,
∴∠A=180°-2∠B=180°-2×50°=80°.
故答案為:80.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分,于點(diǎn).
(1)若,求的度數(shù):
(2)點(diǎn)為線段的中點(diǎn),連接,求證://.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎、小明、小亮在解方程時,解法各不相同,請你回答下列問題:
(1)簡要分析一下三位同學(xué)的解法是否正確.如果正確,他運(yùn)用了哪種解一元二次方程的方法;如果錯誤,錯誤的原因是什么?你是否從中體會到解一元二次方程的數(shù)學(xué)思想是什么?
(2)請你選擇一種你熟練的方法嘗試解一元二次方程.
由方程,得 因此,, 所以這個數(shù)是0或3 | 方程兩邊同時約去,得:所以這個數(shù)是3 |
由方程,得 即.于是, 或.因此, 所以這個數(shù)是0或3. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=5,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點(diǎn)G,則CG為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=4,AD=10,E是AD的一點(diǎn),且AE=2,M是AB上一點(diǎn),射線ME交CD的延長線于點(diǎn)F,EG⊥ME交BC于點(diǎn)G,連接MG,FG,FG交AD于點(diǎn)N.
(1)當(dāng)點(diǎn)M為AB中點(diǎn)時,則DF= ,FG= .(直接寫出答案)
(2)在整個運(yùn)動過程中,的值是否會變化,若不變,求出它的值;若變化,請說明理由.
(3)若△EGN為等腰三角形時,請求出所有滿足條件的AM的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,于,連接交于點(diǎn),.
(1)如圖1,求證:;
(2)如圖2,于點(diǎn),求證:;
(3)如圖3,點(diǎn)在的延長線上,于點(diǎn)交于點(diǎn),連接,交的延長線于點(diǎn),連接,當(dāng)的面積為時, 求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過D作DE⊥BC,垂足為E,連結(jié)OE,CD=,∠ACB=30°.
(1)求證:DE是⊙O的切線;
(2)分別求AB,OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于A,B兩點(diǎn).
(1)求的面積;
(2)觀察圖象,可知一次函數(shù)值小于反比例函數(shù)值的x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費(fèi)用不超過296元,那么該商店有哪幾種購買方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com