如圖1,直角梯形ABCD中,∠A=∠B=90°,AD=AB=6cm,BC=8cm,點(diǎn)E從點(diǎn)A出發(fā)沿AD方向以1cm/s的速度向終點(diǎn)D運(yùn)動;點(diǎn)F從點(diǎn)C出發(fā)沿CA方向以2cm/s的速度向終點(diǎn)A運(yùn)動,當(dāng)點(diǎn)E、點(diǎn)F中有一點(diǎn)運(yùn)動到終點(diǎn),另一點(diǎn)也隨之停止.設(shè)運(yùn)動時間為ts.

(1)當(dāng)t為何值時,△AEF和△ACD相似?
(2)如圖2,連接BF,隨著點(diǎn)E、F的運(yùn)動,四邊形ABFE可能是直角梯形?若可能,請求出t的值及四邊形ABFE的面積;若不能,請說明理由;
(3)當(dāng)t為何值時,△AFE的面積最大?最大值是多少?
【答案】分析:(1)E、F在移動的過程中,△AEF和△ACD相似有兩種情況,△AEF∽△ACD和△AEF∽△ADC,根據(jù)相似三角形的性質(zhì)就可以求出t的值.
(2)E、F移動t秒后ABFE是直角梯形,則FE⊥AD,延長EF交BC于點(diǎn)G,同樣利用三角形相似把FG表示出來,從而求出EF,根據(jù)勾股定理建立等量關(guān)系求出t值,就可以求出梯形的面積.
(3)過點(diǎn)F作MN⊥AD于M,交BC于點(diǎn)N,可以證明△CFN∽△CAB,表示出FN,從而表示出FM,利用三角形的面積公式及uky表示出三角形的面積S與t的函數(shù)關(guān)系式,從而求其解.
解答:解:(1)當(dāng)運(yùn)動t秒時,△AEF∽△ADC時,
,AE=t,CF=2t,
∴AF=AC-2t
∵∠A=∠B=90°,AD=AB=6cm,BC=8cm,由勾股定理,得
AC=10cm,
∴AF=10-2t
,解得
t=
當(dāng)運(yùn)動t秒時,△AEF∽△ACD時,

解得:
t=

(2)設(shè)t秒后四邊形AEFB是直角梯形,延長EF交BC于點(diǎn)G,

∴EG⊥AD,EG⊥BC
∵∠B=90°,
∴AB⊥BC,
∴EG∥AB,且AD∥BC
∴△CGF∽△CBA,四邊形AEGB為矩形
,EG=AB=6
,

∴EF=6-
在Rt△AEF中,由勾股定理,得
t2+(6-t)2=(10-2t)2,解得
t1=,t2=(不符合題意應(yīng)舍去)
∴EF=,AE=
∴S四邊形ABFE=
=cm2

(3)過點(diǎn)F作MN⊥AD于M,交BC于點(diǎn)N
∴∠DEG=90°.
∵AD∥BC,
∴∠BGE=∠DEG=90°.
∵∠B=90°,
∴EG∥AB,
∴△CFN∽△CAB,


∴MF=6-,
∴S△AFE=
=-(t-2+
∴當(dāng)t=時,S△AFE最大,最大值是
點(diǎn)評:本題是一道有關(guān)直角梯形的結(jié)合解答題,考查了二次函數(shù)的最值,相似三角形的判定與性質(zhì),勾股定理的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,若AD=8,BC=10,則cosC的值為( �。�
A、
4
5
B、
3
5
C、
3
4
D、
4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,將直角梯形ABCD沿CE折疊,使點(diǎn)D落在AB上的F點(diǎn),若AB=BC=12,EF=10,∠FCD=90°,則AF=
6或8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,OA∥BC,A、B兩點(diǎn)的坐標(biāo)分別為A(13,0),B(11,12).動點(diǎn)P、Q分別從O、B兩點(diǎn)出發(fā),點(diǎn)P以每秒2個單位的速度沿x軸向終點(diǎn)A運(yùn)動,點(diǎn)Q以每秒1個單位的速度沿BC方向運(yùn)動;當(dāng)點(diǎn)P停止運(yùn)動時,點(diǎn)Q也同時停止運(yùn)動.線段PQ和OB相交于點(diǎn)D,過點(diǎn)D作DE∥x軸,交AB于點(diǎn)E,射線QE交x軸于點(diǎn)F.設(shè)動點(diǎn)P、Q運(yùn)動時間精英家教網(wǎng)為t(單位:秒).
(1)當(dāng)t為何值時,四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請求出△PQF的面積s關(guān)于時間t的函數(shù)關(guān)系式;若不變,請求出△PQF的面積.
(3)隨著P、Q兩點(diǎn)的運(yùn)動,△PQF的形狀也隨之發(fā)生了變化,試問何時會出現(xiàn)等腰△PQF?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•黑龍江)如圖,在直角梯形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于點(diǎn)E,在BC上截取BF=AE,連接AF交CE于點(diǎn)G,連接DG交AC于點(diǎn)H,過點(diǎn)A作AN⊥BC,垂足為N,AN交CE于點(diǎn)M.則下列結(jié)論;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正確的個數(shù)是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AD∥BC,∠D=90°,AD=a,BC=b,AB=c,以AB為直徑作⊙O.試探究:
(1)當(dāng)a,b,c滿足什么關(guān)系時,⊙O與DC相離?
(2)當(dāng)a,b,c滿足什么關(guān)系時,⊙O與DC相切?
(3)當(dāng)a,b,c滿足什么關(guān)系時,⊙O與DC相交?

查看答案和解析>>

同步練習(xí)冊答案