【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙O交x軸于A、B兩點,直線FA⊥x 軸于點A,點D在FA上,且DO平行⊙O的弦MB,連DM并延長交x軸于點C.
(1)判斷直線DC與⊙O的位置關(guān)系,并給出證明;
(2)設(shè)點D的坐標(biāo)為(﹣2,4),試求MC的長及直線DC的解析式.
【答案】見解析
【解析】試題分析:根據(jù)全等三角形、相似三角形的判斷與性質(zhì)以及一次函數(shù)的應(yīng)用,利用全等三角形和相似三角形來得出線段相等或成比例解決本題.
(1)直線與圓的關(guān)系無非是相切,相交和相離,只要連接OM證明OM是否與DC垂直即可得出結(jié)論.
解題思路:通過證明三角形AOD和DOM全等來求解.已知的條件有OA=OM,一條公共邊OD,只要證明出兩組對應(yīng)邊的夾角相等即可.可通過OD∥MB,OM=OB來證得.
(2)求MC的長就要求出DC的長,也就是要求出AC的長.已知了D的坐標(biāo),那么AD,OA,AB的長就都知道了.
不難得出三角形OMC和DAC相似,因此可得出OM,AD,CM,AC的比例關(guān)系.已知了AD,OM的長,就能求出MC,AC的比例關(guān)系了.
在直角三角形ADC中,AD的長已知,DC=DM+MC=DA+MC,那么可根據(jù)勾股定理和MC,AC的比例關(guān)系求出MC的長.也就求出了M的坐標(biāo).有了M和D的坐標(biāo)可以用待定系數(shù)法求出DC所在直線的函數(shù)解析式.
解:(1)答:直線DC與⊙O相切于點M.
證明如下:連OM,∵DO∥MB,
∴∠1=∠2,∠3=∠4.
∵OB=OM,
∴∠1=∠3.
∴∠2=∠4.
在△DAO與△DMO中, .
∴△DAO≌△DMO.
∴∠OMD=∠OAD.
由于FA⊥x軸于點A,
∴∠OAD=90°.
∴∠OMD=90°.即OM⊥DC.
∴DC切⊙O于M.
(2)由D(-2,4)知OA=2(即⊙O的半徑),AD=4.
由(1)知DM=AD=4,由△OMC∽△DAC,知.
∴AC=2MC,
在Rt△ACD中,CD=MC+4.
由勾股定理,有(2MC)2+42=(MC+4)2,解得MC=或MC=0(不合題意,舍去).
∴MC的長為.
∴點C(,0).
設(shè)直線DC的解析式為y=kx+b.
則有.
解得.
∴直線DC的解析式為y=-x+.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小龍平時愛觀察也喜歡動腦,他看到路邊的建筑和電線架等,發(fā)現(xiàn)了一個現(xiàn)象:一切需要穩(wěn)固的物品都是由三角形這個圖形構(gòu)成的,當(dāng)時他就思考,數(shù)學(xué)王國中不僅只有三角形,為何偏偏用三角形穩(wěn)固它們呢?請你用所學(xué)的數(shù)學(xué)知識解釋這一現(xiàn)象的依據(jù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù),(k為常數(shù),k≠1).
(1)若點A(1,2)在這個函數(shù)的圖象上,求k的值;
(2)若在這個函數(shù)圖象的每一分支上,y隨x的增大而增大,求k的取值范圍;
(3)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數(shù)的圖象上,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計算正確的是( )
A. a5a2=a10 B. (a2)4=a8 C. (a3b)2=a6b D. a3+a5=a8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點A(1,1)關(guān)于原點對稱的點是( )
A. (1,-1)B. (-1,1)C. (-1,-1)D. (1,1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com