【題目】如圖,已知相交直線AB和CD及另一直線MN,如果要在MN上找出與AB,CD距離相等的點(diǎn),則這樣的點(diǎn)至少有_____個,最多有_____個.

【答案】12

【解析】

分別作∠AOD及∠AOC的平分線,由角平分線的性質(zhì)可知,到AB、CD距離相等的點(diǎn)必在這兩條角平分線上,由于此點(diǎn)在直線MN上,所以符合條件的點(diǎn)在這兩條角平分線與直線MN的交點(diǎn)上.

解:如圖所示,

分別作∠AOD及∠AOC的平分線OEOF,

∵OEOF分別是∠AOD及∠AOC的平分線,

∴直線OEOF上的點(diǎn)到AB、CD距離相等,

∴點(diǎn)M必在直線OE或直線OF上,

∵點(diǎn)M在直線MN上,

∴點(diǎn)M在這兩條角平分線與直線MN的交點(diǎn)上,

∴當(dāng)OFOEMN平行時,符合條件的點(diǎn)有1個;

當(dāng)OFOE均與直線MN不平行時,符合條件的點(diǎn)有2個.

故答案為:1,2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∠A′B′C′可以由△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長為(

A.4
B.6
C.3
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(墻的長度不超過45m),用80m長的籬笆圍一個矩形場地.

(1)怎樣圍才能使矩形場地的面積為750m2?
(2)能否使所圍矩形場地的面積為810m2 , 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE=90°

當(dāng)點(diǎn)D在AC上時,如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?寫出你猜想的結(jié)論,并說明理由;

將圖1中的ADE繞點(diǎn)A順時針旋轉(zhuǎn)α角(0°α<90°,如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C為⊙O上的一點(diǎn),點(diǎn)D是 的中點(diǎn),過D作⊙O的切線交AC于E,DE=3,CE=1.

(1)求證:DE⊥AC;
(2)求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)①若有意義,則化簡=   

②化簡:a2=   

(2)已知|7﹣9m|+(n﹣3)2=9m﹣7﹣,求(n﹣m)2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)D(﹣2,﹣3)在拋物線上.

(1)求拋物線的解析式;
(2)拋物線的對稱軸上有一動點(diǎn)P,求出PA+PD的最小值;
(3)若拋物線上有一動點(diǎn)P,使三角形ABP的面積為6,求P點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案