【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB=4,點P是AB邊上的一個動點。過點P作AB的垂線交AC邊于點D,以PD為邊作∠DPE=60°,PE交BC邊于點E。
(1)以點D為AC邊的中點時,求BE的長
(2)當PD=PE時,求AP的長;
(3)設(shè)AP的長為x,四邊形CDPE的面積為y,求出y與x的函數(shù)解析式及自變量的取值范圍。
【答案】(1);(2);(3),.
【解析】
(1)根據(jù)勾股定理可求出AC和BC的長,從而知AD的長度,在中可求出AP的長,則,又因可知,根據(jù)直角三角形的性質(zhì)即可得BE的長;
(2)設(shè),由題(1)可知,在和中可以求出AP和BP的長,再根據(jù)求解即可得;
(3)由可得DP、BP的長,從而得BE和EP的長,根據(jù)面積公式可列出等式:,化簡即可得,最后根據(jù)和聯(lián)立求x的取值范圍.
(1)由題意可得,在中,
點D為AC的中點
在中可得,
又
在中,;
(2)設(shè)
由題(1)可知,在中,
在中,
又,即
解得
;
(3)設(shè),則
在中,
在中,
即
化簡得
由題意得,即
又,即
聯(lián)立解得
故出y與x的函數(shù)解析式為,自變量的取值范圍為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全等三角形又叫做合同三角形,平面內(nèi)的合同三角形分為真正合同三角形與鏡面合同三角形,假設(shè)△ABC和△A1B1C1是合同三角形,點A與點A1對應(yīng),點B與點B1對應(yīng),點C與點C1對應(yīng),當沿周界A→B→C→A,及A1→B1→C1→A1環(huán)繞時,若運動方向相同,則稱它們是真正合同三角形(如圖1),若運動方向相反,則稱它們是鏡面合同三角形(如圖2),兩個真正合同三角形都可以在平面內(nèi)通過平移或旋轉(zhuǎn)使它們重合,兩個鏡面合同三角形要重合,則必須將其中一個翻轉(zhuǎn)180°.下列各組合同三角形中,是鏡面合同三角形的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,過A(-1,0)、B(3,0)兩點的拋物線交y軸于點C,其頂點為點D,設(shè)△ACD的面積為S1,△ABC的面積為S2.小芳經(jīng)探究發(fā)現(xiàn):S1︰S2是一個定值.這個定值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,邊AB的垂直平分線DE交AC于D,若CD=10cm,則AD=____________ cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠C=90°,AC=3,BC=4,分別以AC、BC、AB為直徑作半圓,如圖所示,則陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的例題:
解方程
解:(1)當x≥0時,
原方程化為x2 – x –2=0,
解得:x1=2,x2= - 1(不合題意,舍去)
(2)當x<0時,
原方程化為x2 + x –2=0,
解得:x1=1,(不合題意,舍去)x2= -2
∴原方程的根是x1=2, x2= - 2
(3)請參照例題解方程
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△AOP為等邊三角形,A(0,2),點B為y軸上一動點,以BP為邊作等邊△PBC,延長CA交x軸于點E.
(1)求證:OB=AC;
(2)∠CAP的度數(shù)是;
(3)當B點運動時,猜想AE的長度是否發(fā)生變化?并說明理由;
(4)在(3)的條件下,在y軸上存在點Q,使得△AEQ為等腰三角形,請寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com