【題目】如圖,拋物線(xiàn)與x軸交于A,B兩點(diǎn),與直線(xiàn)相交于B,C兩點(diǎn),連結(jié)A,C兩點(diǎn)。
(1)寫(xiě)出直線(xiàn)BC的解析式
(2)求△ABC的面積
【答案】(1)y=-x+;(2).
【解析】
試題(1)利用拋物線(xiàn),令y=0,解方程求出點(diǎn)A、B的坐標(biāo),然后把點(diǎn)B的坐標(biāo)代入直線(xiàn)BC的解析式求出b的值,即可得解;
(2)根據(jù)點(diǎn)A、B的坐標(biāo)求出AB的長(zhǎng)度,再把拋物線(xiàn)解析式與直線(xiàn)BC的解析式聯(lián)立求解得到點(diǎn)C的坐標(biāo),然后根據(jù)三角形的面積公式列式計(jì)算即可得解;
試題解析:(1)令y=0,則﹣x2+3=0,
解得x1=﹣2,x2=2,
所以,點(diǎn)A(﹣2,0),B(2,0),
所以,﹣×2+b=0,
解得b=,
所以,直線(xiàn)BC的解析式為y=﹣x+;
(2)∵點(diǎn)A(﹣2,0),B(2,0),
∴AB=2﹣(﹣2)=2+2=4,
聯(lián)立,
解得,(為點(diǎn)B坐標(biāo),舍去),
所以,點(diǎn)C的坐標(biāo)為(﹣1,),
所以,△ABC的面積=×4×=;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的角平分線(xiàn),則圖中的等腰三角形有( )
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)荊州市“創(chuàng)建全國(guó)文明城市”號(hào)召,某單位不斷美化環(huán)境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長(zhǎng)不超過(guò)18m,另外三邊由36m長(zhǎng)的柵欄圍成.設(shè)矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)若矩形空地的面積為160m2,求x的值;
(3)若該單位用8600元購(gòu)買(mǎi)了甲、乙、丙三種綠色植物共400棵(每種植物的單價(jià)和每棵栽種的合理用地面積如下表).問(wèn)丙種植物最多可以購(gòu)買(mǎi)多少棵?此時(shí),這批植物可以全部栽種到這塊空地上嗎?請(qǐng)說(shuō)明理由.
甲 | 乙 | 丙 | |
單價(jià)(元/棵) | 14 | 16 | 28 |
合理用地(m2/棵) | 0.4 | 1 | 0.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:以下是我們教科書(shū)中的一段內(nèi)容,請(qǐng)仔細(xì)閱讀,并解答有關(guān)問(wèn)題.
公元前3世紀(jì),古希臘學(xué)家阿基米德發(fā)現(xiàn):若杠桿上的兩物體與支點(diǎn)的距離與其重量成反比,則杠桿平衡,后來(lái)人們把它歸納為“杠桿原理”,通俗地說(shuō),杠桿原理為:
阻力×阻力臂=動(dòng)力×動(dòng)力臂
(問(wèn)題解決)
若工人師傅欲用撬棍動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1500N和0.4m.
(1)動(dòng)力F(N)與動(dòng)力臂l(m)有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5m時(shí),撬動(dòng)石頭需要多大的力?
(2)若想使動(dòng)力F(N)不超過(guò)題(1)中所用力的一半,則動(dòng)力臂至少要加長(zhǎng)多少?
(數(shù)學(xué)思考)
(3)請(qǐng)用數(shù)學(xué)知識(shí)解釋?zhuān)何覀兪褂霉,?dāng)阻力與阻力臂一定時(shí),為什么動(dòng)力臂越長(zhǎng)越省力.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=+mx+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0),
(1)求m的值及拋物線(xiàn)的頂點(diǎn)坐標(biāo).
(2)點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸l上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△AOB中,將扇形COD按圖1擺放,使扇形的半徑OC、OD分別與OA、OB重合,OA=OB=2,OC=OD=1,固定等邊△AOB不動(dòng),讓扇形COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),線(xiàn)段AC、BD也隨之變化,設(shè)旋轉(zhuǎn)角為α.(0<α≤360°)
(1)當(dāng)OC∥AB時(shí),旋轉(zhuǎn)角α= 度;
發(fā)現(xiàn):(2)線(xiàn)段AC與BD有何數(shù)量關(guān)系,請(qǐng)僅就圖2給出證明.
應(yīng)用:(3)當(dāng)A、C、D三點(diǎn)共線(xiàn)時(shí),求BD的長(zhǎng).
拓展:(4)P是線(xiàn)段AB上任意一點(diǎn),在扇形COD的旋轉(zhuǎn)過(guò)程中,請(qǐng)直接寫(xiě)出線(xiàn)段PC的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在關(guān)于x的分式方程 ①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實(shí)數(shù),方程①的根為非負(fù)數(shù).
(1)求k的取值范圍;
(2)當(dāng)方程②有兩個(gè)整數(shù)根x1、x2,k為整數(shù),且k=m+2,n=1時(shí),求方程②的整數(shù)根;
(3)當(dāng)方程②有兩個(gè)實(shí)數(shù)根x1、x2,滿(mǎn)足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負(fù)整數(shù)時(shí),試判斷|m|≤2是否成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象與拋物線(xiàn)y=-3x2的開(kāi)口大小和方向都相同,并且在x軸上截得的線(xiàn)段長(zhǎng)為3.又知圖象過(guò)(0,6)點(diǎn),則該二次函數(shù)的表達(dá)式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com