【題目】在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實(shí)數(shù)根,比如對(duì)于方程 ,操作步驟是:
第一步:根據(jù)方程系數(shù)特征,確定一對(duì)固定點(diǎn)A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動(dòng)一個(gè)直角三角板,使一條直角邊恒過(guò)點(diǎn)A,另一條直角邊恒過(guò)點(diǎn)B;
第三步:在移動(dòng)過(guò)程中,當(dāng)三角板的直角頂點(diǎn)落在x軸上點(diǎn)C處時(shí),點(diǎn)C 的橫坐標(biāo)m即為該方程的一個(gè)實(shí)數(shù)根(如圖1)
第四步:調(diào)整三角板直角頂點(diǎn)的位置,當(dāng)它落在x軸上另一點(diǎn)D處時(shí),點(diǎn)D 的橫坐標(biāo)為n即為該方程的另一個(gè)實(shí)數(shù)根。

(1)在圖2 中,按照“第四步“的操作方法作出點(diǎn)D(請(qǐng)保留作出點(diǎn)D時(shí)直角三角板兩條直角邊的痕跡)
(2)結(jié)合圖1,請(qǐng)證明“第三步”操作得到的m就是方程 的一個(gè)實(shí)數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個(gè)固定點(diǎn)的位置,若要以此方法找到一元二次方程 的實(shí)數(shù)根,請(qǐng)你直接寫出一對(duì)固定點(diǎn)的坐標(biāo);
(4)實(shí)際上,(3)中的固定點(diǎn)有無(wú)數(shù)對(duì),一般地,當(dāng) , , 與a,b,c之間滿足怎樣的關(guān)系時(shí),點(diǎn)P( , ),Q( , )就是符合要求的一對(duì)固定點(diǎn)?

【答案】
(1)

解:如圖2所示:


(2)

證明:在圖1中,過(guò)點(diǎn)B作BD⊥x軸,交x軸于點(diǎn)D.

根據(jù)題意可證△AOC∽△CDB.

.

.

∴m(5-m)=2.

∴m2-5m+2=0.

∴m是方程x2-5x+2=0的實(shí)數(shù)根.


(3)

解:方程ax2+bx+c=0(a≠0)可化為

x2+x+=0.

模仿研究小組作法可得:A(0,1),B(-)或A(0,),B(-,c)等.


(4)

解:以圖3為例:P(m1,n1)Q(m2,n2),

設(shè)方程的根為x,根據(jù)三角形相似可得.=.

上式可化為x2-(m1+m2)x+m1m2+n1n2=0.

又ax2+bx+c=0,

即x2+x+=0.

比較系數(shù)可得:m1+m2=-.

m1m2+n1n2=.


【解析】(1)根據(jù)題目中給的操作步驟操作即可得出圖2中的圖.
(2)在圖1中,過(guò)點(diǎn)B作BD⊥x軸,交x軸于點(diǎn)D.依題意可證△AOC∽△CDB.然后根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出式子,化簡(jiǎn)后為m2-5m+2=0,從而得證。
(3)將方程ax2+bx+c=0(a≠0)可化為x2+x+=0.模仿研究小組作法即可得答案。
(4)以圖3為例:P(m1,n1)Q(m2,n2),設(shè)方程的根為x,根據(jù)三角形相似可得.=.化簡(jiǎn)后為x2-(m1+m2)x+m1m2+n1n2=0.
又x2+x+=0.再依據(jù)相對(duì)應(yīng)的系數(shù)相等即可求出。
【考點(diǎn)精析】利用根與系數(shù)的關(guān)系和相似三角形的判定與性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將下列各數(shù)填入相應(yīng)的集合中.

—7 , 0, ,—22, -2.55555…, 3.01, +9 ,4.020020002…,+10﹪, -2.

無(wú)理數(shù)集合:{ }; 負(fù)有理數(shù)集合:{ };

正分?jǐn)?shù)集合:{ }; 非負(fù)整數(shù)集合:{ };

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形ABCD中,∠ABC的角平分線BE將邊AD分成長(zhǎng)度為5cm6cm的兩部分,則平行四邊形ABCD的周長(zhǎng)為__________________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的運(yùn)算程序中,若開(kāi)始輸入的x值為100我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,2次輸出的結(jié)果為25,,2018次輸出的結(jié)果為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為做好食堂的服務(wù)工作,某學(xué)校食堂對(duì)學(xué)生最喜愛(ài)的菜肴進(jìn)行了抽樣調(diào)查,下面試根據(jù)收集的數(shù)據(jù)繪制的統(tǒng)計(jì)圖(不完整):

(1)參加抽樣調(diào)查的學(xué)生數(shù)是______人,扇形統(tǒng)計(jì)圖中“大排”部分的圓心角是______°;

(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)若全校有3000名學(xué)生,請(qǐng)你根據(jù)以上數(shù)據(jù)估計(jì)最喜愛(ài)“烤腸”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點(diǎn),向東為正方向,以1個(gè)單位長(zhǎng)表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.

(2)A景區(qū)與C景區(qū)之間的距離是多少?

(3)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開(kāi)始充足電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)ABD的坐標(biāo)為(1,0),(3,0),(0,1),點(diǎn)C在第四象限,ACB=90°,AC=BC.若ABCABC'關(guān)于點(diǎn)D成中心對(duì)稱,則點(diǎn)C'的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王紅有5張寫著以下數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最小,最小值是   

(2)從中取出2張卡片,使這2張卡片數(shù)字相除商最大,最大值是   

(3)從中取出除0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,(注:每個(gè)數(shù)字只能用一次,如:23×[1﹣(﹣2)]),請(qǐng)另寫出一種符合要求的運(yùn)算式子   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直角邊長(zhǎng)為6的等腰直角△AOC放在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)C、A分別在x軸,y軸的正半軸上,一條拋物線經(jīng)過(guò)點(diǎn)A、C及點(diǎn)B(﹣3,0).

(1)求該拋物線的解析式;
(2)若點(diǎn)P是線段BC上一動(dòng)點(diǎn),過(guò)點(diǎn)P作AB的平行線交AC于點(diǎn)E,連接AP,當(dāng)△APE的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)P(t,t)在拋物線上,則稱點(diǎn)P為拋物線的不動(dòng)點(diǎn),將(1)中的拋物線進(jìn)行平移,平移后,該拋物線只有一個(gè)不動(dòng)點(diǎn),且頂點(diǎn)在直線y=2x﹣ 上,求此時(shí)拋物線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案