【題目】如圖是一份汽車票價表,李麗星期一、三、五要乘汽車上下班,星期二、四乘汽車上班,而搭朋友的車回家;她應該買什么樣的票合算?如果周末她要乘汽車去公園,那么她選哪種票合算?
汽車公司票價表
單程票 | 元 |
周票 | 元 |
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,AB=4.動點P從A點出發(fā),以每秒π個單位的速度在⊙O上按順時針方向運動一周.設動點P的運動時間為t秒,點C是圓周上一點,且∠AOC=40°,當t=秒時,點P與點C中心對稱,且對稱中心在直徑AB上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請你寫出求解過程;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:把一個半圓與拋物線的一部分組成的封閉圖形稱為“蛋圓”.
如圖,拋物線y=x2﹣2x﹣3與x軸交于點A,B,與y軸交于點D,以AB為直徑,在x軸上方作半圓交y軸于點C,半圓的圓心記為M,此時這個半圓與這條拋物線x軸下方部分組成的圖形就稱為“蛋圓”.
(1)直接寫出點A,B,C的坐標及“蛋圓”弦CD的長;
A , B , C , CD=;
(2)如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.
①求經(jīng)過點C的“蛋圓”切線的解析式;
②求經(jīng)過點D的“蛋圓”切線的解析式;
(3)由(2)求得過點D的“蛋圓”切線與x軸交點記為E,點F是“蛋圓”上一動點,試問是否存在S△CDE=S△CDF , 若存在請求出點F的坐標;若不存在,請說明理由;
(4)點P是“蛋圓”外一點,且滿足∠BPC=60°,當BP最大時,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(0,2),△AOB為等邊三角形,P是x軸上一個動點(不與原O重合),以線段AP為一邊在其右側作等邊三角形△APQ.
(1)求點B的坐標;
(2)在點P的運動過程中,∠ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請說明理由.
(3)連接OQ,當OQ∥AB時,求P點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面一段:
計算
觀察發(fā)現(xiàn),上式從第二項起,每項都是它前面一項的倍,如果將上式各項都乘以,所得新算式中除個別項外,其余與原式中的項相同,于是兩式相減將使差易于計算.
解:設,①
則,②
②-①得,則.
上面計算用的方法稱為“錯位相減法”,如果一列數(shù),從第二項起每一項與前一項之比都相等(本例中是都等于),那么這列數(shù)的求和問題,均可用上述“錯位相減”法來解決.
下面請你觀察算式是否具備上述規(guī)律?若是,請你嘗試用“錯位相減”法計算上式的結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2-2(k-3)x+k2-4k-1=0.
(1)若這個方程有實數(shù)根,求k的取值范圍;
(2)若這個方程有一個根為1,求k的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為a的正方形ABCD中,E、F是邊AD,AB上兩點(與端點不重合),且AE=BF.連接CE,DF相交于點M,
(1)當E為邊AD的中點時,則DF的長為 (用含a的式子表示)
(2)求證:∠MCB+∠MFB=180°.
(3)點M能成為DF的中點嗎?如果能,求出此時CM的長(用含a的式子表示);如果不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com