如圖,△OAB中,OA=OB=5,∠AOB=80°,以點(diǎn)O為圓心,3為半徑的優(yōu)弧
MN
分別交OA,OB于點(diǎn)M,N.
(1)點(diǎn)P在右半弧上(∠BOP是銳角),將OP繞點(diǎn)O逆時針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;
(2)點(diǎn)T在左半弧上,若AT與弧相切,求點(diǎn)T到OA的距離;
(3)設(shè)點(diǎn)Q在優(yōu)弧
MN
上,當(dāng)△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).
考點(diǎn):圓的綜合題
專題:
分析:(1)首先根據(jù)已知得出∠AOP=∠BOP′,進(jìn)而得出△AOP≌△BOP′,即可得出答案;
(2)利用切線的性質(zhì)得出∠ATO=90°,再利用勾股定理求出AT的長,進(jìn)而得出TH的長即可得出答案;
(3)當(dāng)OQ⊥OA時,△AOQ面積最大,且左右兩半弧上各存在一點(diǎn)分別求出即可.
解答:(1)證明:如圖1,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,
∠BOP′=∠POP′+∠BOP=80°+∠BOP,
∴∠AOP=∠BOP′,
∵在△AOP和△BOP′中
OA=OB
∠AOP=∠BOP′
OP=OP′

∴△AOP≌△BOP′(SAS),
∴AP=BP′;

(2)解:如圖1,連接OT,過點(diǎn)T作TH⊥OA于點(diǎn)H,
∵AT與
MN
相切,
∴∠ATO=90°,
∴AT=
OA2-OT2
=
102-62
=8,
1
2
×OA×TH=
1
2
×AT×OT,
1
2
×10×TH=
1
2
×8×6,
解得:TH=
24
5
,即點(diǎn)T到OA的距離為
24
5
;

(3)解:如圖2,當(dāng)OQ⊥OA時,△AOQ的面積最大;
理由:∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,
當(dāng)Q點(diǎn)在優(yōu)弧
MN
右側(cè)上,
∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,
綜上所述:當(dāng)∠BOQ的度數(shù)為10°或170°時,△AOQ的面積最大.
點(diǎn)評:此題主要考查了圓的綜合應(yīng)用以及切線的判定與性質(zhì)以及全等三角形的判定與性質(zhì)等知識,根據(jù)數(shù)形結(jié)合進(jìn)行分類討論得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列句子中,不是命題的是( 。
A、兩直線平行,同位角相等
B、直線AB垂直于CD嗎?
C、若|a|=|b|,那么a3=b3
D、同角的補(bǔ)角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

菱形具有而矩形不具有的性質(zhì)是( 。
A、內(nèi)角和為360°
B、對角線平分一組對角
C、對角相等
D、對角線互相平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知梯形ABCD,AD∥BC,AD=DC=4,BC=8,點(diǎn)N在BC上,CN=2,E是AB中點(diǎn),在AC上找一點(diǎn)M使EM+MN的值最小,此時其最小值一定等于( 。
A、4B、5C、6D、8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
(1)20+(-2)2-(-
1
4
-1
(2)(x34-3x4•(x24;
(3)(-2x23•(-2x32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式:
x+4
6
-
x
3
≤x-4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠1=∠2,∠C=∠D.求證:∠A=∠F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解下列不等式和不等式組并把它們的解集在數(shù)軸上表示出來:
(1)
1
2
x-1
2
3
(2x+1);
(2)
2x+3≤x+11(1)
2x+5
3
-1>2-x(2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把下列各式分解因式:
(1)mn2+6mn+9m;              
(2)4x2(a-b)+(b-a).

查看答案和解析>>

同步練習(xí)冊答案