解不等式:
x+4
6
-
x
3
≤x-4.
考點:解一元一次不等式
專題:
分析:利用不等式的性質(zhì),求得不等式的解集即可.
解答:解:
x+4
6
-
x
3
≤x-4
x+4-2x≤6x-24
-7x≤-28
解得:x≥4.
點評:此題考查解不等式,依據(jù)不等式的基本性質(zhì),在不等式的兩邊同時加上或減去同一個數(shù)或整式不等號的方向不變;在不等式的兩邊同時乘以或除以同一個正數(shù)不等號的方向不變;在不等式的兩邊同時乘以或除以同一個負數(shù)不等號的方向改變.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

為保證中小學生每天鍛煉一小時,某校開展了形式多樣的體育活動項目,小明對某班同學參加鍛煉的情況進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖(1)和圖(2),則扇形統(tǒng)計圖(2)中表示“足球”項目扇形的圓心角的度數(shù)為( 。
A、45°B、60°
C、72°D、108°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列兩個三角形中,一定全等的是( 。
A、兩個等腰直角三角形
B、含有60°內(nèi)角的兩個等腰三角形
C、含有70°內(nèi)角,且腰相等的兩個等腰三角形
D、含有100°內(nèi)角,且底邊相等的兩個等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法正確的是( 。
A、-5是(-5)2的算術(shù)平方根
B、16的平方根是±4
C、2是-4的算術(shù)平方根
D、9的平方根是3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△OAB中,OA=OB=5,∠AOB=80°,以點O為圓心,3為半徑的優(yōu)弧
MN
分別交OA,OB于點M,N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°得OP′.求證:AP=BP′;
(2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
(3)設(shè)點Q在優(yōu)弧
MN
上,當△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設(shè)一元二次方程ax2+bx+c=0的兩根為x1,x2,根據(jù)根與系數(shù)的關(guān)系,則有x1+x2=-
b
a
,x1x2=
c
a
.根據(jù)以上材料,解答下列問題.已知關(guān)于x的方程x2-2(k-1)x+k2=0有兩個實數(shù)根x1,x2
(1)求實數(shù)k的取值范圍;
(2)若|x1+x2|=x1x2-1,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)解方程組:
x+1
5
-
y-1
2
=2
x+y=3
;
(2)先化簡,再求值:2a(a-2b)-(a-2b)2,其中a=
1
2
,b=-
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

為了更好改善河流的水質(zhì),治污公司決定購買10臺污水處理設(shè)備.現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如下表:經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多2萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少6萬元.
A型B型
價格(萬元/臺)ab
處理污水量(噸/月)240180
(1)求a,b的值;
(2)治污公司經(jīng)預(yù)算購買污水處理設(shè)備的資金不超過105萬元,你認為該公司有哪幾種購買方案;
(3)在(2)的條件下,若每月要求處理污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知a是方程x2+5x=14的根,求(2a-11)(a-1)-(a+1)2+(3+2a)(3-2a)的值.

查看答案和解析>>

同步練習冊答案