如圖,平面內(nèi),四條線段AB、BC、CD、DA首尾順次相接,∠B=24°,∠D=42°,點E在BA的延長線上,∠DAE的平分線和∠BCD的平分線相交于M,則∠AMC=
123
123
°.
分析:先設AD、BC交于點F,∠ABF=x.根據(jù)三角形的外角的性質(zhì),可得∠EAD=∠B+∠AFB,再根據(jù)角平分線的定義知∠EAM=12+
1
2
x,即可求得∠CRM的值,由三角形的內(nèi)角和定理,易求∠AMC.
解答:解:設AD、BC交于點F,AM與BC交于點R,∠AFB=x.
∠EAD=∠B+∠AFB=24+x,則∠EAM=12+
1
2
x,
則∠ARB=∠CRM=
1
2
x-12,
又∵∠BCM=69-
1
2
x,
設在△CMR中利用三角形內(nèi)角和定理:
1
2
x-12)+(69-
1
2
x)+∠AMC=180,
解得∠AMC=123°.
故應填:123.
點評:本題主要考查了三角形的外角性質(zhì)和三角形的內(nèi)角和定理.在解題過程中如果需要一個量的值時,可以先把它設出,在解題過程中用所設的未知數(shù)表示,設的量可能也不需求出.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)平面內(nèi),四條線段AB、BC、CD、DA首尾順次相接,∠ABC=24°,∠ADC=42°.
(1)∠BAD和∠BCD的角平分線交于點M(如圖1),求∠AMC的大小;
(2)點E在BA的延長線上,∠DAE的平分線和∠BCD的平分線交于點N(如圖2),則∠ANC=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

平面內(nèi),四條線段AB、BC、CD、DA首尾順次相接,∠ABC=m°,∠ADC=n°.點E在BA的延長線上,∠DAE的平分線和∠BCD的平分線交于點N(如圖),則∠ANC=
180°+m°+n°
2
180°+m°+n°
2
°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在同一平面內(nèi),四條線AB、BC、CD、DA首尾順次相接,AD、BC相交于點O,AM、CN分別是∠BAD和∠BCD的平分線,∠B=α,∠D=β.
(1)如圖2,AM、CN相交于點P.
①當α=β時,判斷∠APC與α的大小關系,并說明理由.
②當α>β時,請直接寫出∠APC與α,β的數(shù)量關系.
(2)是否存在AM∥CN的情況?若存在,請判斷并說明α,β的數(shù)量關系;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

如圖,平面內(nèi),四條線段AB、BC、CD、DA首尾順次相接,∠B=24°,∠D=42°,點E在BA的延長線上,∠DAE的平分線和∠BCD的平分線相交于M,則∠AMC=________°.

查看答案和解析>>

同步練習冊答案