【題目】如圖,已知在ABC中,AB=AC=5,BC=6,點(diǎn)M在△ABC內(nèi),AM平分∠BAC.點(diǎn)E與點(diǎn)M在AC所在直線的兩側(cè),AE⊥AB,AE=BC,點(diǎn)N在AC邊上,CN=AM,連接ME、BN;
(1)根據(jù)題意,補(bǔ)全圖形;
(2)ME與BN有何數(shù)量關(guān)系,判斷并說(shuō)明理由;
(3)點(diǎn)M在何處時(shí)BM+BN取得最小值?請(qǐng)確定此時(shí)點(diǎn)M的位置,并求出此時(shí)BM+BN的最小值.
【答案】(1)見(jiàn)解析;(2)ME=BN,理由見(jiàn)解析;(3)當(dāng)B,M,E三點(diǎn)共線時(shí),BM+BN的最小值是.
【解析】
(1)根據(jù)題意補(bǔ)全圖形即可;
(2)如圖1,延長(zhǎng)AM交BC于點(diǎn)F,根據(jù)角平分線的等于及垂直的等于可得∠MAE+∠CAM=90°,根據(jù)等腰三角形“三線合一”的性質(zhì)可得AF⊥BC,可得∠C+∠CAM=90°,即可證明∠MAE=∠C,利用SAS即可證明△AME≌△CNB,根據(jù)全等三角形的性質(zhì)可得ME=BN;
(3)由(2)知ME=BN,則當(dāng)B,M,E三點(diǎn)共線時(shí),此時(shí)BM+BN取得最小值,根據(jù)勾股定理求出BE的長(zhǎng)即可得答案.
(1)如圖1所示:
(2)ME=BN.
如圖1,延長(zhǎng)AM交BC于點(diǎn)F,
∵AM平分∠BAC,
∴∠BAM=∠CAM.
∵AE⊥AB,
∴∠MAE+∠BAM=90°.
∴∠MAE+∠CAM=90°
∵AB=AC,AM平分∠BAC,
∴AF⊥BC.
∴∠C+∠CAM=90°.
∴∠MAE=∠C.
又∵AM=CN,AE=BC,
∴△AME≌△CNB(SAS).
∴ME=BN.
(3)由(2)知ME=BN,則當(dāng)B,M,E三點(diǎn)共線時(shí),此時(shí)BM+BN取得最小值,點(diǎn)M的位置如圖2,
∴BE即是BM+BN的最小值,
∵AB=5,BC=6,
∴AE=BC=6,
∴BE===.
∴BM+BN的最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用兩個(gè)邊長(zhǎng)為10的小正方形拼成一個(gè)大的正方形.
(1)大正方形的邊長(zhǎng)長(zhǎng)度是___________;
(2)若沿次大正方形邊的方向剪出一個(gè)長(zhǎng)方形,使長(zhǎng)方形的邊與大正方形的邊重合或平行,能否使剪出的長(zhǎng)方形的長(zhǎng)寬之比3:2,且面積400cm2?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D為CB延長(zhǎng)線上一點(diǎn),點(diǎn)E是AC的中點(diǎn),連接DE交AB于點(diǎn)F,以DE為邊向下作等邊△DEG,連接CG、FG,若FG⊥DE,BD+BF=7,則CG的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC內(nèi)有一點(diǎn)D,AD=5,BD=6,CD=4,將△ABD繞A點(diǎn)逆時(shí)針旋轉(zhuǎn),使AB與AC重合,點(diǎn)D旋轉(zhuǎn)至點(diǎn)E,則∠CDE的正切值為 ( )
A. B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
(材料)如圖,對(duì)任意符合條件的直角三角形BAC,繞其銳角頂點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得△DAE,所以∠BAE=90°,且四邊形ACFD是一個(gè)正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖形我們就能證明勾股定理: .
(請(qǐng)回答)如圖是任意符合條件的兩個(gè)全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫一種證明勾股定理的方法嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)準(zhǔn)備圍建一個(gè)矩形苗圃,其中一邊靠墻,另外三邊用長(zhǎng)為米的籬笆圍成,若墻長(zhǎng)為米,設(shè)這個(gè)苗圃垂直于墻的一邊長(zhǎng)為米.
若苗圃園的面積為平方米,求的值;
若平行于墻的一邊長(zhǎng)不小于米,這個(gè)苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值,如果沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次方程x2﹣4x+k=0有兩個(gè)不相等的實(shí)數(shù)根
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個(gè)相同的根,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinxcosy+cosxsiny.
據(jù)此判斷下列等式成立的是 (寫出所有正確的序號(hào))
①cos(﹣60°)=﹣;
②sin75°=;
③sin2x=2sinxcosx;
④sin(x﹣y)=sinxcosy﹣cosxsiny.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著市民環(huán)保意識(shí)的增強(qiáng),煙花爆竹銷售量逐年下降,菏澤市2014年銷售煙花爆竹20萬(wàn)箱,到2016年煙花爆竹銷售量為9.8萬(wàn)箱.求菏澤市2014年到 2016年煙花爆竹銷售量的平均下降率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com