分析 作AM⊥BD于M,DN⊥AB于N,先證明△ABM≌△DBN得AM=DN,BM=BN,再證明△ACM≌△DEN得CM=EN即可證明.
解答 證明:作AM⊥BD于M,DN⊥AB于N,則∠AMB=∠DNB=90°
在△ABM和△DBN中,
$\left\{\begin{array}{l}{∠B=∠B}\\{∠AMB=∠DNB}\\{AB=BD}\end{array}\right.$,
∴△ABM≌△DBN,
∴AM=DN,BM=BN
在RT△ACM和RT△DEN中,
$\left\{\begin{array}{l}{AC=DE}\\{AM=DN}\end{array}\right.$,
∴△ACM≌△DEN,
∴CM=EN,
∴BM-CM=BN-EN,即BC=EB
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì),熟練掌握全等三角形的判定和性質(zhì)是解決問題的關(guān)鍵,學(xué)會(huì)添加輔助線的方法,本題用了兩次全等,屬于中考?碱}型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 直線y1經(jīng)過一、三、四象限 | |
B. | 拋物線y2必經(jīng)過點(diǎn)(1,0) | |
C. | 當(dāng)x>1或x<0時(shí),y2>y1 | |
D. | 當(dāng)x>-1時(shí),y1、y2均隨x的增大而增大 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | (2$\sqrt{3}$,30°) | B. | (60°,2$\sqrt{3}$) | C. | (30°,4) | D. | (30°,2$\sqrt{3}$) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
汽車行駛速度v(千米/小時(shí)) | 30 | 40 | 50 | 60 | 70 |
制動(dòng)距離s(米) | 5 | 12 | 19 | 26 | 33 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com