【題目】如圖,正方形ABCD,點(diǎn)E,F(xiàn)分別在AD,CD上,BG⊥EF,點(diǎn)G為垂足,AB=5a,AE=a,CF=2a,則BG長是( )
A. a B. a C. a D. a
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:平面直角坐標(biāo)系中,點(diǎn)A(a,b)的坐標(biāo)滿足|a﹣b|+b2﹣8b+16=0.
(1)如圖1,求證:OA是第一象限的角平分線;
(2)如圖2,過A作OA的垂線,交x軸正半軸于點(diǎn)B,點(diǎn)M、N分別從O、A兩點(diǎn)同時出發(fā),在線段OA上以相同的速度相向運(yùn)動(不包括點(diǎn)O和點(diǎn)A),過A作AE⊥BM交x軸于點(diǎn)E,連BM、NE,猜想∠ONE與∠NEA之間有何確定的數(shù)量關(guān)系,并證明你的猜想;
(3)如圖3,F(xiàn)是y軸正半軸上一個動點(diǎn),連接FA,過點(diǎn)A作AE⊥AF交x軸正半軸于點(diǎn)E,連接EF,過點(diǎn)F點(diǎn)作∠OFE的角平分線交OA于點(diǎn)H,過點(diǎn)H作HK⊥x軸于點(diǎn)K,求2HK+EF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著智能手機(jī)的普及,微信搶紅包已成為春節(jié)期間人們最喜歡的活動之一,某校七年級(1)班班長對全班50名學(xué)生在春節(jié)期間所搶的紅包金額進(jìn)行統(tǒng)計,并繪制成了統(tǒng)計圖.請根據(jù)以上信息回答:
(1)該班同學(xué)所搶紅包金額的眾數(shù)是______,
中位數(shù)是______;
(2)該班同學(xué)所搶紅包的平均金額是多少元?
(3)若該校共有18個班級,平均每班50人,請你估計該校學(xué)生春節(jié)期間所搶的紅包總金額為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的BC邊上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)和,與軸交于點(diǎn)則此拋物線對此函數(shù)的表達(dá)式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的中點(diǎn),∠BDE=∠CDF,請你添加一個條件,使DE=DF成立.
(1)你添加的條件是
(2)在(1)的條件下,不再添加輔助線和字母,證明DE=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這個分式為“和諧分式”
(1)下列分式中, 是和諧分式(填序號即可)
① ② ③ ④
(2)若為正整數(shù),且為和諧分式,請寫出所有的值
(3)在化簡時,
小強(qiáng)進(jìn)行了如下三步變形:
原式=
請你接著小強(qiáng)的方法完成化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了貫徹落實市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:
車型 | 目的地 | |
A村(元/輛) | B村(元/輛) | |
大貨車 | ||
800 | 900 | |
小貨車 | 400 | 600 |
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,它與x軸的兩個交點(diǎn)分別為(-1,0),(3,0).對于下列命題:①b-2a=0;②abc<0;③4a-2b+c<0.其中正確的有( 。
A. 3個 B. 2個 C. 1個 D. 0個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com