【題目】如圖1,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,
(1)△BCE≌△CAD的依據(jù)是 (填字母);
(2)猜想:AD、DE、BE的數(shù)量關(guān)系為 (不需證明);
(3)當(dāng)BE繞點B、AD繞點A旋轉(zhuǎn)到圖2位置時,線段AD、DE、BE之間又有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)AAS;(2)見解析;(3)DE=BE﹣AD.
【解析】
試題分析:(1)由題中條件求解△ACD≌△CBE,需要用到兩個角和一個邊;
(2)由題中條件求解△ACD≌△CBE,得出對應(yīng)邊相等,再利用線段之間的轉(zhuǎn)化,進而可得出結(jié)論;
(3)中還是先求解△ACD≌△CBE,利用線段之間的轉(zhuǎn)化得出結(jié)論.
(1)解:AAS.
(2)證明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∵AD⊥DE,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,又AC=BC,
∴△ACD≌△CBE(AAS),
∴AD=CE,BE=CD,
DE=CE﹣CD=AD﹣BE.
(3)解:DE=CD﹣CE=BE﹣AD.
證明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∵AD⊥DE,
∴∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,又AC=BC,
∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,
DE=CD﹣CE=BE﹣AD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB∥CD,E是AB的中點,∠CEA=∠DEB.
(1)試判斷△CED的形狀并說明理由;
(2)若AC=5,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上一動點A向左移動3個單位長度到達點B,再向右移動4個單位長度到達點C,若點C表示的數(shù)為1,則點A表示的數(shù)為( )
A.7 B.1 C.0 D.﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級四個班級的學(xué)生義務(wù)為校植樹.一班植樹x棵,二班植樹的棵樹比一班的2倍少40棵,三班植樹的棵數(shù)比二班的一半多30棵,四班植樹的棵數(shù)比三班的一半多20棵.
(1)求四個班共植樹多少棵?(用含x的式子表示)
(2)若三班和四班植樹一樣多,那么植樹最多的班級比植樹最少的班級多植樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過某十字路口的汽車,它可能繼續(xù)直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn),如果這三種情況是等可能的,當(dāng)三輛汽車經(jīng)過這個十字路口時:
(1)求三輛車全部同向而行的概率;
(2)求至少有兩輛車向左轉(zhuǎn)的概率;
(3)由于十字路口右拐彎處是通往新建經(jīng)濟開發(fā)區(qū)的,因此交管部門在汽車行駛高峰時段對車流量作了統(tǒng)計,發(fā)現(xiàn)汽車在此十字路口向右轉(zhuǎn)的頻率為,向左轉(zhuǎn)和直行的頻率均為.目前在此路口,汽車左轉(zhuǎn)、右轉(zhuǎn)、直行的綠燈亮的時間分別為30秒,在綠燈亮總時間不變的條件下,為了緩解交通擁擠,請你用統(tǒng)計的知識對此路口三個方向的綠燈亮的時間做出合理的調(diào)整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)平面內(nèi)下列各點中,在第三象限的點是( )
A. ( 1, 3 )
B. ( -3, 0 )
C. ( -1, 3 )
D. ( -1, -3 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.
(1)若∠EON=18°,求∠AOC的度數(shù).
(2)試判斷∠MON與∠AOE的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com