若點(diǎn)P(m,2013)與點(diǎn)Q(2014,n)關(guān)于y軸對(duì)稱,則


  1. A.
    m=-2014,n=2013
  2. B.
    m=2014,n=-2013
  3. C.
    m=2014,n=2013
  4. D.
    m=-2014,n=-2013
A
分析:根據(jù)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變,可得到x、y的值,進(jìn)而計(jì)算出答案.
解答:∵點(diǎn)P(m,2013)與點(diǎn)Q(2014,n)關(guān)于y軸對(duì)稱,
∴m=-2014,n=2013,
故選:A.
點(diǎn)評(píng):此題主要考查了關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn),關(guān)鍵是掌握點(diǎn)的變化規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•瑞安市模擬)已知A(-1,m)與B(2,m+3)是反比例函數(shù)y=
k
x
圖象上的兩個(gè)點(diǎn)
(1)求k的值;
(2)求直線AB的函數(shù)解析式;
(3)若點(diǎn)C(-1,0),點(diǎn)D是反比例函數(shù)y=
k
x
圖象上的一點(diǎn),如果以A,B,C,D四點(diǎn)為頂點(diǎn)的四邊形為梯形,請(qǐng)你求出點(diǎn)D的坐標(biāo)(能求出一個(gè)點(diǎn)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鄭州模擬)如圖1所示,已知二次函數(shù)y=ax2-6ax+c與x軸分別交于點(diǎn)A(2,0)、B(4,0),與y軸交于點(diǎn)C(0,-8t)(t>0).
(1)求a、c的值及拋物線頂點(diǎn)D的坐標(biāo)(用含t的代數(shù)式表示);
(2)如圖1,連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′恰好落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)t的值;
(3)如圖2,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,-4)、(4,-3),邊HG位于邊EF的右側(cè).若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn)(不與E、F、G重合),請(qǐng)你說明以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)不能構(gòu)成平行四邊形;
(4)將(3)中的正方形EFGH水平移動(dòng),若點(diǎn)P是正方形邊FG或EH上任意一點(diǎn),在水平移動(dòng)過程中,是否存在點(diǎn)P,使以PA、PB、PC、PD的長(zhǎng)度為邊長(zhǎng)構(gòu)成平行四邊形,其中PA、PB為對(duì)邊.若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鼓樓區(qū)一模)已知A、B、C三點(diǎn)均在⊙O上,且△ABC是等邊三角形.
(1)如圖,用直尺和圓規(guī)作出△ABC;(不寫作法,保留作圖痕跡)
(2)若點(diǎn)P是
BC
上一點(diǎn),連接PA、PB、PC.探究PA、PB、PC之間的等量關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)已知:如圖,在△ABC中,AB=AC=15,cos∠A=
45
.點(diǎn)M在AB邊上,AM=2MB,點(diǎn)P是邊AC上的一個(gè)動(dòng)點(diǎn),設(shè)PA=x.
(1)求底邊BC的長(zhǎng);
(2)若點(diǎn)O是BC的中點(diǎn),聯(lián)接MP、MO、OP,設(shè)四邊形AMOP的面積是y,求y關(guān)于x的函數(shù)關(guān)系式,并出寫出x的取值范圍;
(3)把△MPA沿著直線MP翻折后得到△MPN,是否可能使△MPN的一條邊(折痕邊PM除外)與AC垂直?若存在,請(qǐng)求出x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案