如圖3,四邊形OABC為菱形,點(diǎn)A、B在以點(diǎn)O為圓心的弧DE上,若OA=3,∠1=∠2,則扇形ODE的面積為

A.        B. 2       C.        D. 3

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知:如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6cm,將△OAB繞點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到Rt△OA1B1
(1)直接寫(xiě)出線段OA1的長(zhǎng)度和∠AOB1的度數(shù);
(2)連接AA1,則四邊形OAA1B1是平行四邊形嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•臺(tái)州模擬)如圖等腰三角形紙片OAB,現(xiàn)要求在紙片上截一個(gè)正方形,使它的面積盡可能大.
小明的一種設(shè)計(jì)方案是:如圖,在扇形紙片OAB內(nèi),畫(huà)正方形CDEF,使C、D在OA上,F(xiàn)在OB上;連接OE并延長(zhǎng)交弧AB于I,畫(huà)IH∥ED交OA于H,IJ∥EF交OB于J,再畫(huà)JG∥FC交OA于G.
(1)你能說(shuō)明
EF
JI
=
DE
HI
嗎?
(2)四邊形GHIJ是正方形嗎?如果是,請(qǐng)證明.如果不是,請(qǐng)說(shuō)明理由.
(3)如果扇形OAB的圓心角∠AOB=30°,OA=6cm,小明截得的四邊形GHIJ面積是多少(
3
≈1.73
,結(jié)果精確到0.1cm2)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△OA1B1
(1)線段OA1的長(zhǎng)是
6
6
,∠AOB1的度數(shù)是
135°
135°
;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形;
(3)求點(diǎn)B旋轉(zhuǎn)到點(diǎn)B1的位置所經(jīng)過(guò)的路線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△OAB繞點(diǎn)O旋轉(zhuǎn)l80°得到△OCD,連接AD,BC,得到四邊形ABCD.
則AB
平行且等于
平行且等于
CD;與△AOD成中心對(duì)稱三角形是
△COB
△COB
,由此可得到AD
平行且等于
平行且等于
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•株洲)如圖,在Rt△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點(diǎn)O沿逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△OA1B1
(1)線段OA1的長(zhǎng)是
6
6
,∠AOB1的度數(shù)是
135
135
度;
(2)連接AA1,求證:四邊形OAA1B1是平行四邊形;
(3)四邊形OAA1B1的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案