【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(2,0)、B(﹣4,0)兩點(diǎn),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線段AB上,頂點(diǎn)F,G分別在線段BC、AC上.

(I)求拋物線的解析式;

(II)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;

(III)當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=kDF.若點(diǎn)M在拋物線上,求k的值.

【答案】(I)y=x2+x﹣4;(II)S矩形DEFG=12m﹣6m2(0<m<2);(III)點(diǎn)M在拋物線上,此時(shí)k的值是:k=

【解析】

(I)用待定系數(shù)法,將A、B的坐標(biāo)代入y=ax2+bx﹣4,即可得到拋物線的解析式;

(II)表示出矩形的長(zhǎng)和寬是解題的關(guān)鍵,由△ADG∽△AOC,從而=,得到DG=4-2m,由△BEF∽△BOC,從而=得到DE=3m,因而得到Sm的函數(shù)關(guān)系式

(III)當(dāng)矩形的面積s取最大值時(shí),就是函數(shù)的值是最大值時(shí),根據(jù)二次函數(shù)的性質(zhì)就可以求出相應(yīng)的m的值,則矩形的四個(gè)頂點(diǎn)的坐標(biāo)就可以求出,利用待定系數(shù)法就可以求出直線DF的解析式,便可求出直線DF與拋物線的交點(diǎn)M坐標(biāo),過M作x軸的垂線交x軸于H,有△OEF∽△OHM,則根據(jù)FM=kDF,即k==,便可求出k的值.

(I)∵拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(2,0)、B(﹣4,0)兩點(diǎn),

,

解得:

故拋物線解析式為:y=x2+x﹣4;

(II)由題意,=,而AO=2,OC=4,AD=2﹣m,

故DG=4﹣2m,

=,EF=DG,得BE=4﹣2m,

∴DE=3m,

∴S矩形DEFG=DGDE=(4﹣2m)3m=12m﹣6m2(0<m<2).

(III)∵S矩形DEFG=12m﹣6m2(0<m<2),

m=1時(shí),矩形的面積最大,且最大面積是6.

當(dāng)矩形面積最大時(shí),其頂點(diǎn)為D(1,0),G(1,﹣2),F(xiàn)(﹣2,﹣2),E(﹣2,0),

設(shè)直線DF的解析式為y=kx+b,

,

解得;,

∴y=x﹣,

又拋物線P的解析式為:y=x2+x﹣4,

x﹣=x2+x﹣4,可求出x=

設(shè)射線DF與拋物線P相交于點(diǎn)M,則M的橫坐標(biāo)為,

過M作x軸的垂線交x軸于H,

有k====,

點(diǎn)M在拋物線上,此時(shí)k的值是:k=

故答案為:(I)y=x2+x﹣4;(II)S矩形DEFG=12m﹣6m2(0<m<2);(III)點(diǎn)M在拋物線上,此時(shí)k的值是:k=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了方便孩子入學(xué),小王家購買了一套學(xué)區(qū)房,交首付款15萬元,剩余部分向銀行貸款,貸款及貸款利息按月分期還款,每月還款數(shù)相同.計(jì)劃每月還款y萬元,x個(gè)月還清貸款,若yx的反比例函數(shù),其圖象如圖所示:

(1)求yx的函數(shù)解析式;

(2)若小王家計(jì)劃180個(gè)月(15年)還清貸款,則每月應(yīng)還款多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長(zhǎng)為12, DAB邊上一動(dòng)點(diǎn),過點(diǎn)DDE⊥BC于點(diǎn)E.過點(diǎn)EEF⊥AC于點(diǎn)F
(1)AD=2,求AF的長(zhǎng);
(2)當(dāng)AD取何值時(shí),DE=EF?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A,點(diǎn)B,點(diǎn)C均落在格點(diǎn)上.

(1)計(jì)算ABC的周長(zhǎng)等于_____

(2)點(diǎn)P、點(diǎn)Q(不與ABC的頂點(diǎn)重合)分別為邊AB、BC上的動(dòng)點(diǎn),4PB=5QC,連接AQ、PC.當(dāng)AQPC時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ、PC,并簡(jiǎn)要說明點(diǎn)P、Q的位置是如何找到的(不要求證明).

___________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實(shí)驗(yàn)樓對(duì)面是一幢教學(xué)樓,小敏在實(shí)驗(yàn)樓的窗口C處測(cè)得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實(shí)驗(yàn)樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形一腰上的中線將這個(gè)等腰三角形的周長(zhǎng)分為915兩部分,則這個(gè)等腰三角形的腰長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點(diǎn)A(3,2),有下面四個(gè)結(jié)論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤3.其中正確的是( 。

A. ①② B. ②③ C. ①④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,其中

(1)求證:為任意非零實(shí)數(shù)時(shí),拋物線軸總有兩個(gè)不同的交點(diǎn);

(2)求拋物線軸的兩個(gè)交點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);

(3)將拋物線沿軸正方向平移一個(gè)單位長(zhǎng)度得到拋物線,則無論取任何非零實(shí)數(shù)都經(jīng)過同一個(gè)定點(diǎn),直接寫出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

同步練習(xí)冊(cè)答案