分析 連接AC,然后根據(jù)勾股定理求出AC的長度,再根據(jù)勾股定理逆定理計算出∠CBD=90°,然后根據(jù)四邊形ABCD的面積=△ABD的面積+△BCD的面積,列式進行計算即可得解.
解答 解:連接AC,
∵∠ABC=90°,AB=3cm,AD=4cm,
∴DB=$\sqrt{A{B}^{2}+A{D}^{2}}$=$\sqrt{9+16}$=5(cm),
∵DC=13cm,CB=12cm,
∴BD2+BC2=52+122=25+144=169,
CD2=132=169,
∴BD2+BC2=CD2,
∴△BCD的直角三角形,
四邊形ABCD的面積=△ABD的面積+△BCD的面積=$\frac{1}{2}$AB•AD+$\frac{1}{2}$BD•CB=$\frac{1}{2}$×3×4+$\frac{1}{2}$×5×12=6+30=36(cm2).
答:四邊形ABCD的面積為36cm2.
點評 本題考查了勾股定理,勾股定理逆定理,連接AC,構造出直角三角形是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com