【題目】10分如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為4,2,直線y=x+3交AB,BC分別于點(diǎn)M,N,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)M,N

1求反比例函數(shù)的解析式;

2若點(diǎn)P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo)

【答案】1反比例函數(shù)的解析式是y=;2點(diǎn)P的坐標(biāo)是0,40,4).

【解析】

試題分析:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn)問題,三角形的面積,矩形的性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生應(yīng)用性質(zhì)進(jìn)行計(jì)算的能力,題目比較好,難度適中.(1求出OA=BC=2,將y=2代入y=x+3求出x=2,得出M的坐標(biāo),把M的坐標(biāo)代入反比例函數(shù)的解析式即可求出答案;2求出四邊形BMON的面積,求出OP的值,即可求出P的坐標(biāo)

試題解析:1B4,2,四邊形OABC是矩形,OA=BC=2,將y=2代入y=x+3得:x=2,M2,2,

把M的坐標(biāo)2,2代入y=得:k=4,反比例函數(shù)的解析式是y=;

2把x=4代入y=得:y=1,即CN=1,S四邊形BMON=S矩形OABCSAOMSCON=4×2×2×2×4×1=4,由題意得:OP×AM=4,AM=2,OP=4,點(diǎn)P的坐標(biāo)是0,40,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=與y=-kx2+k(k≠0)在同一直角坐標(biāo)系中的圖象可能是(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(6×106)÷(-3×103)_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算多項(xiàng)式-2x(3x-2)2+3除以3x-2后,所得商式與余式兩者之和為何?(  )
A.-2x+3
B.-6x2+4x
C.-6x2+4x+3
D.-6x2-4x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)正多邊形的每一個(gè)外角都是30°,則這個(gè)正多邊形的邊數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(-3,0)、B(1,0)、C(0,3)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過點(diǎn)P作y軸的垂線,垂足點(diǎn)為E,連接AE.

(1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);

(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)在(2)的條件下,當(dāng)S取到最大值時(shí),過點(diǎn)P作x軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,求出P′的坐標(biāo),并判斷P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.

(1)求拋物線的解析式;

(2)求點(diǎn)D的坐標(biāo);

(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一多項(xiàng)式除以2x2-3,得到的商式為x+4,余式為3x+2,則此多項(xiàng)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的直角坐標(biāo)系中,解答下列問題:

(1)分別寫出A、B兩點(diǎn)的坐標(biāo);

(2)將△ABC向左平移3個(gè)單位長度,再向上平移5個(gè)單位長度,畫出平移后的△A1B1C1

(3)求 △A1B1C1的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案