【題目】已知,為的直徑,弦于點(diǎn),在的延長(zhǎng)線(xiàn)上取一點(diǎn),與相切于點(diǎn),連接交于點(diǎn).
(1)如圖①,若,求和的大。
(2)如圖②,若為半徑的中點(diǎn),,且,求的長(zhǎng).
【答案】(1),;(2).
【解析】
(1)連接,根據(jù)直角三角形的兩個(gè)銳角互余,求得,從而求得的度數(shù),再根據(jù)等邊對(duì)等角和切線(xiàn)的性質(zhì)求出;
(2)連接,根據(jù)和證出,再根據(jù)的圓周角所對(duì)的弦是直徑得出CG為直徑,再根據(jù)為半徑的中點(diǎn),利用三角函數(shù)確定,從而求出GP的長(zhǎng),再根據(jù)等角的余角相等證出,從而得出即可.
解:(1)連接,
∵于點(diǎn),
∴.
∵,
∴.
∴.
∵,
∴.
∵與相切于點(diǎn),
∴.
∴.
(2)連接,
∵于點(diǎn),
∴.
∵,
∴.
∴為的直徑.
∵為半徑的中點(diǎn),
∴.
在中,.
∴.
∵與相切于點(diǎn),為的直徑,
∴.
在中,,
∴.
∵,
∴.
∵,
∴.
∵,
∴.
∴.
∵,
∴.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線(xiàn)上,∠ACB=20°,則∠ADC的度數(shù)是
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,點(diǎn)P是內(nèi)切圓的圓心,將沿x軸的正方向作無(wú)滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合。第一次滾動(dòng)后,圓心為,第二次滾動(dòng)后圓心為…依次規(guī)律,第2019次滾動(dòng)后,內(nèi)切圓的圓心的坐標(biāo)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)、分別落在點(diǎn)、處,點(diǎn)在軸上,再將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)在軸上,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,點(diǎn)在軸上,依次(無(wú)滑動(dòng))進(jìn)行下去…….若點(diǎn)、,則點(diǎn)的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品的日銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元)之間的關(guān)系如下表,且日銷(xiāo)售量y與銷(xiāo)售價(jià)x之間滿(mǎn)足一次函數(shù)關(guān)系.
x(元) | 130 | 150 | 165 |
y(件) | 70 | 50 | 35 |
(1)求y與x之間的函數(shù)關(guān)系式
(2)若該商品的進(jìn)價(jià)是每件120元,商家將每件商品的銷(xiāo)售價(jià)定為160元時(shí),則每日銷(xiāo)售的總利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊 中, 是邊 上一點(diǎn),連接 ,將 繞點(diǎn) 逆時(shí)針旋轉(zhuǎn) ,得到 ,連接 ,若 ,,有下列結(jié)論:① ;② ;③ 是等邊三角形;④ 的周長(zhǎng)是 .其中,正確結(jié)論的個(gè)數(shù)是
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線(xiàn)上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線(xiàn).
已知:CB⊥AD,ED⊥AD,測(cè)得BC=1m,DE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD中,點(diǎn)E在邊CD上,AQ⊥BE于點(diǎn)Q,DP⊥AQ于點(diǎn)P.
(1)求證:AP=BQ;
(2)在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出圖中四對(duì)線(xiàn)段,使每對(duì)中較長(zhǎng)線(xiàn)段與較短線(xiàn)段長(zhǎng)度的差等于PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,AB=AC,AD平分∠BAC交BC于點(diǎn)D,在線(xiàn)段AD上任取一點(diǎn)P(點(diǎn)A除外),過(guò)點(diǎn)P作EF∥AB.分別交AC、BC于點(diǎn)E和點(diǎn)F,作PQ∥AC,交AB于點(diǎn)Q,連接QE.
(1)求證:四邊形AEPQ為菱形:
(2)當(dāng)點(diǎn)P在線(xiàn)段EF上的什么位置時(shí),菱形AEPQ的面積為四邊形EFBQ面積的一半?請(qǐng)說(shuō)明理
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com