20.如圖,AB為⊙O的直徑,BC、AD是⊙O的切線,過O點作EC⊥OD,EC交BC于C,交直線AD于E.
(1)求證:CD是⊙O的切線;
(2)若AE=1,AD=3,求陰影部分的面積.

分析 (1)首先作OH⊥CD,垂足為H,由BC、AD是⊙O的切線,易證得△BOC≌△AOE(ASA),繼而可得OD是CE的垂直平分線,則可判定DC=DE,即可得OD平分∠CDE,則可得OH=OA,證得CD是⊙O的切線;
(2)首先證得△AOE∽△ADO,然后由相似三角形的對應(yīng)邊成比例,求得OA的長,然后利用三角函數(shù)的性質(zhì),求得∠DOA的度數(shù),繼而求得答案.

解答 (1)證明:作OH⊥CD,垂足為H,
∵BC、AD是⊙O的切線,
∴∠CBO=∠OAE=90°,
在△BOC和△AOE中,
$\left\{\begin{array}{l}{∠CBO=∠OAE}\\{OB=OA}\\{∠BOC=∠AOE}\end{array}\right.$,
∴△BOC≌△AOE(ASA),
∴OC=OE,
又∵EC⊥OD,
∴DE=DC,
∴∠ODC=∠ODE,
∴OH=OA,
∴CD是⊙O的切線;

(2)∵∠E+∠AOE=90°,∠DOA+∠AOE=90°,
∴∠E=∠DOA,
又∵∠OAE=∠ODA=90°,
∴△AOE∽△ADO,
∴$\frac{EA}{OA}$=$\frac{OA}{AD}$,
∴OA2=EA•AD=1×3=3,
∵OA>0,
∴OA=$\sqrt{3}$,
∴tanE=$\frac{OA}{AE}$=$\sqrt{3}$,
∴∠DOA=∠E=60°,
∵DA=DH,∠OAD=∠OHD=90°,
∴∠DOH=∠DOA=60°,
∴S陰影部分=$\frac{1}{2}$×3×$\sqrt{3}$+$\frac{1}{2}$×3×$\sqrt{3}$-$\frac{120×π×(\sqrt{3})^{2}}{360}$=3$\sqrt{3}$-π.

點評 此題考查了切線的判定與性質(zhì)、全等三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、角平分線的性質(zhì)以及相似三角形的判定與性質(zhì).注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.(1)如圖①,△ABC中,點D、E在邊BC上,AD平分∠BAC,AE⊥BC,∠B=35°,∠C=65°,求∠DAE的度數(shù);
(2)如圖②,若把(1)中的條件“AE⊥BC”變成“F為DA延長線上一點,F(xiàn)E⊥BC”,其它條件不變,求∠DFE的度數(shù);
(3)若把(1)中的條件“AE⊥BC”變成“F為AD延長線上一點,F(xiàn)E⊥BC”,其它條件不變,請畫出相應(yīng)的圖形,并直接寫出∠DFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.在平面坐標(biāo)系中△ABO位置如圖,已知OA=AB=5,OB=6,
(1)求A、B兩點的坐標(biāo).  
(2)點Q為y軸上任意一點,直接寫出滿足:S△ABO=S△AOQ的Q點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.已知等邊三角形ABC內(nèi)接于圓O,D為直線AB上一點,若AB=6,S△BCD=3$\sqrt{3}$,則OD的長為2或2$\sqrt{7}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.作圖與證明:
如圖,已知⊙O和⊙O上的一點A,請完成下列任務(wù):
(1)作⊙O的內(nèi)接正六邊形ABCDEF;
(2)連接BF,CE,判斷四邊形BCEF的形狀并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
(1)探究1:如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(2)探究2:如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(3)探究3:如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(直接寫出結(jié)論)
(4)拓展:如圖4,在四邊形ABCD中,O是∠ABC與∠DCB的平分線BO和CO的交點,則∠BOC與∠A+∠D有怎樣的關(guān)系?(直接寫出結(jié)論).
(5)運用:如圖5,五邊形ABCDE中,∠BCD、∠EDC的外角分別是∠FCD、∠GDC,CP、DP分別平分∠FCD和∠GDC且相交于點P,若∠A=140°,∠B=120°,∠E=90°,則∠CPD=95度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.已知2x+3y=5,用含x的式子表示y,得:y=$\frac{5-2x}{3}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.因式分解:4xy2-4x2y-y3=y(y-2x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)開向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的關(guān)系;折線BCD表示轎車離甲地距離y(千米)與x(小時)之間的關(guān)系.請根據(jù)圖象解答下列問題:
(1)求貨車的平均速度;   
(2)轎車追上貨車時,貨車距離乙地多少千米?
(3)轎車到達乙地后,貨車距乙地多少千米?

查看答案和解析>>

同步練習(xí)冊答案