如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點后立刻以原來的速度沿AB返回.點P、Q運動速度均為每秒1個單位長度,當點P到達點C時停止運動,點Q也同時停止.連接PQ,設(shè)運動時間為t(t >0)秒.
(1)求線段AC的長度;
(2)當點Q從點B向點A運動時(未到達A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l:
①當l經(jīng)過點A時,射線QP交AD于點E,求AE的長;
②當l經(jīng)過點B時,求t的值.
(1)5 (2), (3)3、t=2.5,
【解析】
試題分析:(1)在矩形ABCD中,
(2)過點P作PH⊥AB于點H,AP=t,AQ =3-t,
由△AHP∽△ABC,得,∴PH=,
,
.
(3) ①如圖②,線段PQ的垂直平分線為l經(jīng)過點A,則AP=AQ,
即3-t=t,∴t=1.5,∴AP=AQ=1.5,
延長QP交AD于點E,過點Q作QO∥AD交AC于點O,
則,
,∴PO=AO-AP=1.
由△APE∽△OPQ,得.
(ⅱ)如圖④,當點Q從A向B運動時l經(jīng)過點B,
考點:矩形、相似三角形
點評:本題考查矩形,相似三角形,要求考生掌握矩形的性質(zhì),相似三角形的判定方法,會判定兩個三角形相似
科目:初中數(shù)學 來源: 題型:
如圖,已知⊙O的直徑CD為4,弧AC的度數(shù)為120°,弧BC的度數(shù)為30°,在直徑CD上作出點P,使BP+AP的值最小,若BP+AP的值最小,則BP+AP的最小值為 。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知拋物線C:過原點,與軸的另一個交點為B(4,0),A為拋物線C的頂點,直線OA的解析式為,將拋物線C繞原點O旋轉(zhuǎn)180°得到拋物線C1,求拋物線C、C1的解析式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,長是2寬是1的矩形和邊長是1的正三角形,矩形的一長邊與正三角形的一邊在同一水平線上,三角形沿該水平線自左向右勻速穿過矩形。設(shè)穿過的時間為t,矩形與三角形重合部分的面積為S,那么S關(guān)于t的函數(shù)大致圖象應(yīng)為 【 】
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在坐標系xOy中,△ABC中,∠BAC=90°,∠ABC=60°,A(1,0),B(0,),拋物線的圖象過C點.
(1)求拋物線的解析式;
(2)平移該拋物線的對稱軸所在直線l.當l移動到何處時,恰好將△ABC的面積分為1:2的兩部分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在△ABC中,已知AB=AC=4,BC=,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經(jīng)過點A,EF與AC交于M點。探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出△AEM的面積;若不能,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com