【題目】如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH等于( )
A.
B.
C.5
D.4
【答案】A
【解析】解:
∵四邊形ABCD是菱形,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB= =5,
∵S菱形ABCD= ,
∴ ,
∴DH= ,
故選A.
【考點精析】解答此題的關鍵在于理解菱形的性質的相關知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對菱形的判定方法的理解,了解任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.
科目:初中數學 來源: 題型:
【題目】如圖,D是等邊三角形ABC內一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.
(1)求證:∠AEB=∠ADC;
(2)連接DE,若∠ADC=105°,求∠BED的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知等邊△OAB的頂點A在反比例函數y= (x>0)圖象上,當等邊△OAB的頂點B在坐標軸上時,求等邊△OAB頂點A的坐標和△OAB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,△ABC是等腰直角三角形,∠BAC=90°,DE是經過點A的直線,作BD⊥DE,CE⊥DE,
(1)求證:DE=BD+CE.
(2)如果是如圖2這個圖形,我們能得到什么結論?并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,F為AB延長線上一點,點E在BC上,且AE=CF.
(1)求證:△ABE≌△CBF;
(2)若∠CAE=30°,求∠ACF的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于D,AE平分∠BAD,交BC于E,在△ABC外有一點F,使FA⊥AE,FC⊥BC.
(1)求證:BE=CF;
(2)在AB上取一點M,使得BM=2DE,連接ME
①求證:ME⊥BC;
②求∠EMC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖形與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數和一次函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級體育模擬測試中,六名男生引體向上的成績如下(單位:個):10、6、9、11、8、10,下列關于這組數據描述正確的是( )
A.極差是6
B.眾數是10
C.平均數是9.5
D.方差是16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com