精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH等于( )

A.
B.
C.5
D.4

【答案】A
【解析】解:

∵四邊形ABCD是菱形,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB= =5,
∵S菱形ABCD= ,

∴DH= ,
故選A.
【考點精析】解答此題的關鍵在于理解菱形的性質的相關知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半,以及對菱形的判定方法的理解,了解任意一個四邊形,四邊相等成菱形;四邊形的對角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對角線若垂直,順理成章為菱形.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,D是等邊三角形ABC內一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知等邊△OAB的頂點A在反比例函數y= (x>0)圖象上,當等邊△OAB的頂點B在坐標軸上時,求等邊△OAB頂點A的坐標和△OAB的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖1,ABC是等腰直角三角形,∠BAC=90°,DE是經過點A的直線,作BDDE,CEDE,

(1)求證:DE=BD+CE.

(2)如果是如圖2這個圖形,我們能得到什么結論?并證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,AB=CB,ABC=90°,FAB延長線上一點,點EBC上,且AE=CF

1)求證:ABE≌△CBF

2)若CAE=30°,求ACF的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,AB=AC,ADBCDAE平分∠BAD,交BCE,在ABC外有一點F,使FAAE,FCBC

(1)求證:BE=CF;

(2)在AB上取一點M,使得BM=2DE,連接ME

①求證:MEBC

②求∠EMC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖形與反比例函數y= (k≠0)的圖象交于第二、四象限內的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標為(m,﹣2).

(1)求△AHO的周長;
(2)求該反比例函數和一次函數的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】現有一個正六邊形的紙片,該紙片的邊長為20cm,張萌想用一張圓形紙片將該正六邊形紙片完全覆蓋住,則圓形紙片的直徑不能小于 cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校九年級體育模擬測試中,六名男生引體向上的成績如下(單位:個):10、6、9、11、8、10,下列關于這組數據描述正確的是(
A.極差是6
B.眾數是10
C.平均數是9.5
D.方差是16

查看答案和解析>>

同步練習冊答案