(本小題滿分11分)已知:如圖,直線MN交⊙OAB兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于點(diǎn)D,過(guò)點(diǎn)DDEMN于點(diǎn)E

(1)求證:DE是⊙O的切線;

(2)若∠ADE=30°,⊙O的半徑為2,求圖中陰影部分的面積.(結(jié)果保留根號(hào))

 

                       

 

 

 

 

 

 

 

 

【答案】

(1)連結(jié)OD                                 …………………………1分

OA=OD,∴∠OAD=∠ODA.

又∵AD平分∠CAM,∴∠OAD=∠DAE.

∴∠ODA=∠DAE.∴ODMN                       …………………………4分

DEMN,

ODDE.

DE是⊙O的切線                                …………………………5分

(2)連結(jié)OB                                     …………………………6分

∵∠ADE=30°,∴∠DAE=∠OAD=60°.

∴∠BAO=60°.

OA=OB,

∴△OAB是等邊三角形                            …………………………8分

    …………………………11分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分11分)已知直線軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(0,6)

(1)求的值和點(diǎn)A的坐標(biāo);

(2)在矩形OACB中,點(diǎn)P是線段BC上的一動(dòng)點(diǎn),直線PD⊥AB于點(diǎn)D,與軸交于點(diǎn)E,設(shè)BP=,梯形PEAC的面積為。

①求的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

②⊙Q是OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長(zhǎng)為2.4時(shí)點(diǎn)P的坐標(biāo)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分11分)已知直線軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(0,6)

(1)求的值和點(diǎn)A的坐標(biāo);
(2)在矩形OACB中,點(diǎn)P是線段BC上的一動(dòng)點(diǎn),直線PD⊥AB于點(diǎn)D,與軸交于點(diǎn)E,設(shè)BP=,梯形PEAC的面積為。
①求的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
②⊙Q是OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長(zhǎng)為2.4時(shí)點(diǎn)P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分11分)
如圖,已知等邊三角形ABC中,點(diǎn)D,E,F(xiàn)分別為邊AB,AC,BC的中點(diǎn),M為直線
BC上一動(dòng)點(diǎn),△DMN為等邊三角形(點(diǎn)M的位置改變時(shí),△DMN也隨之整體移動(dòng)).
(1)如圖①,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你判斷EN與MF有怎樣的數(shù)量關(guān)系?點(diǎn)F與直線EN有怎樣的位置關(guān)系?都請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由;
(2)如圖②,當(dāng)點(diǎn)M在BC上時(shí),其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖②證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M在點(diǎn)C右側(cè)時(shí),請(qǐng)你在圖③中畫(huà)出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系及點(diǎn)F與直線EN的位置關(guān)系是否仍然成立?若成立?請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(福建泉州卷)數(shù)學(xué) 題型:解答題

(本小題滿分11分)
如圖,已知等邊三角形ABC中,點(diǎn)D,E,F(xiàn)分別為邊AB,AC,BC的中點(diǎn),M為直線
BC上一動(dòng)點(diǎn),△DMN為等邊三角形(點(diǎn)M的位置改變時(shí),△DMN也隨之整體移動(dòng)).
(1)如圖①,當(dāng)點(diǎn)M在點(diǎn)B左側(cè)時(shí),請(qǐng)你判斷EN與MF有怎樣的數(shù)量關(guān)系?點(diǎn)F與直線EN有怎樣的位置關(guān)系?都請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由;
(2)如圖②,當(dāng)點(diǎn)M在BC上時(shí),其它條件不變,(1)的結(jié)論中EN與MF的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖②證明;若不成立,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)M在點(diǎn)C右側(cè)時(shí),請(qǐng)你在圖③中畫(huà)出相應(yīng)的圖形,并判斷(1)的結(jié)論中EN與MF的數(shù)量關(guān)系及點(diǎn)F與直線EN的位置關(guān)系是否仍然成立?若成立?請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省梅州中學(xué)九年級(jí)下學(xué)期3月月考數(shù)學(xué)卷 題型:解答題

(本小題滿分11分)已知直線軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)B的坐標(biāo)為(0,6)

(1)求的值和點(diǎn)A的坐標(biāo);
(2)在矩形OACB中,點(diǎn)P是線段BC上的一動(dòng)點(diǎn),直線PD⊥AB于點(diǎn)D,與軸交于點(diǎn)E,設(shè)BP=,梯形PEAC的面積為。
①求的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;
②⊙Q是OAB的內(nèi)切圓,求當(dāng)PE與⊙Q相交的弦長(zhǎng)為2.4時(shí)點(diǎn)P的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案