【題目】如圖,在等邊△ABC,A,B,C三點(diǎn)在三角形內(nèi)分別作∠1=2=3,三個角的邊相交于D,E,F,

1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進(jìn)行證明.
2)△DEF是否為正三角形?請說明理由.

【答案】1)見解析;(2)見解析;

【解析】

1)由正三角形的性質(zhì)得出∠CAB=ABC=BCA=60°AB=BC,證出∠ABD=BCE,由ASA證明ABD≌△BCE即可;
2)由全等三角形的性質(zhì)得出∠ADB=BEC=CFA,證出∠FDE=DEF=EFD,即可得出結(jié)論;

1)∵△ABC是正三角形,
∴∠CAB=ABC=BCA=60°,AB=BC,
∵∠ABD=ABC-2,∠BCE=ACB-3,∠2=3
∴∠ABD=BCE,
ABDBCE

,
∴△ABD≌△BCEASA);
2DEF是正三角形;理由如下:

∵△ABD≌△BCE≌△CAF,
∴∠ADB=BEC=CFA,
∴∠FDE=DEF=EFD
∴△DEF是正三角形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:在綜合與實(shí)踐課上,同學(xué)們以已知三角形三邊的長度,求三角形面積為主題開展數(shù)學(xué)活動,小穎想到借助正方形網(wǎng)格解決問題。圖1、圖2都是8×8的正方形網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點(diǎn)稱為格點(diǎn)。

操作發(fā)現(xiàn):小穎在圖1中畫出△ABC,其頂點(diǎn)A、BC都是格點(diǎn),同時構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊DE、EF分別經(jīng)過點(diǎn)CA,她借助此圖求出了△ABC的面積。

(1)在圖1中,小穎所畫的△ABC的三邊長分別是AB= BC= ,AC= ;△ABC的面積為

2)請你根據(jù)小穎的思路,在圖2中以格點(diǎn)為頂點(diǎn)畫一個△DEF,使三角形三邊長分別為2、、,并直接寫出△DEF的面積=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的三個頂點(diǎn)分別為A2,3)、B3,1)、C(-2,-2.

1)請?jiān)趫D中作出ABC關(guān)于y軸對稱圖形DEFA、BC的對應(yīng)點(diǎn)分別是D、EF),并直寫出D、EF的坐標(biāo).D、E、F點(diǎn)的坐標(biāo)是:D( , ) E( , ) F( , );

2)求四邊形ABED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個全等的直角三角形與中間的小正方形拼成的一個大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線,軸于點(diǎn),四邊形為正方形,點(diǎn)在線段上,點(diǎn)在此拋物線上,且在直線的左側(cè),則正方形的邊長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與兩坐標(biāo)軸分別交于,三點(diǎn),一次函數(shù)的圖象與拋物線交于兩點(diǎn).

求點(diǎn),,的坐標(biāo);

當(dāng)兩函數(shù)的函數(shù)值都隨著的增大而增大,求的取值范圍;

當(dāng)自變量滿足什么范圍時,一次函數(shù)值大于二次函數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,A、B兩個頂點(diǎn)在軸的上方,點(diǎn)C的坐標(biāo)是(1,0).以點(diǎn)C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長放大到原來的2,設(shè)點(diǎn)B的對應(yīng)點(diǎn)B′的橫坐標(biāo)是a,則點(diǎn)B的橫坐標(biāo)是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:4ac﹣b2<0;2a﹣b=0;a+b+c<0;點(diǎn)M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結(jié)論的個數(shù)是(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,DBC邊上的一點(diǎn),若∠B=36°,AB=AC=BD=2.

(1)求CD的長;

(2)利用此圖求sin18°的值.

查看答案和解析>>

同步練習(xí)冊答案